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Abstract—The goal of dynamic hashing is to design a function and a file structure that allow the address space allocated to the file to
be increased and reduced without reorganizing the whole file. In this paper, we propose a new scheme for dynamic hashing in which
the growth of a file occurs at a rate of % per full expansicn, where n is the number of pages of the file and 4 is a given integer constant
which is smaller than n, as compared to a rate of two in linear hashing. Like linear hashing, the proposed scheme (called linear spiral
hashing) requires no index; however, the proposed scheme may or may not add one more physical page, instead of always adding one
more page in linear hashing, when a split occurs. Therefore, linear spiral hashing can maintain a more stable performance through the
file expansions and have much better storage utilization than linear hashing. From our performance analysis, linear spiral hashing can
achieve nearly 97 percent storage utilization as compared to 78 percent storage utilization by using linear hashing, which is also

verified by a simulation study.
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1 INTRODUCTION

HE goal of dynamic hashing is to design a function and a

file structure that can adapt in response to large,
unpredictable changes in the number and distribution of
keys while maintaining fast retrieval time [3], for example,
for a Web-based database [17]. That is, the address space
allocated to a file can be increased and reduced without
reorganizing the whole file. (Note that the retrieval time
based on the hashing approach is O(1) as compared to
O(log n) in a B-tree approach, where n is the file size.) Over
the past decade, many dynamic hashing schemes have been
proposed. These dynamic hashing schemes can be divided
into two classes: one needs an index, the other one does not
need an index. Extendible hashing [1], [6], [19], [22], [26]
and dynamic hashing [9], [29], [30] belong to the first class.
Linear hashing [4], [5], [10], [11], [12], [14], [15], [16], [18],
[20], [23], [27], 28] and spiral storage [2], [7], [8], [21], [24],
[25] belong to the second class.

Among these dynamic hashing schemes, linear hashing
dispenses with the use of an index at the cost of requiring
overflow pages. The first linear hashing scheme was
proposed by Litwin [18]. Tn linear hashing, a file is
expanded by adding a new page at the end of the file
when a split occurs, and relocating a number of records to
the new page by using a new hashing function. The new
hashing function doubles the size of the address space
created by the old hashing function. Therefore, after a
full expansion (defined in Section 2), the number of pages
is doubled. By having two hashing functions active at a
time, a file can be expanded without reorganizing the
whole records.
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Since in linear hashing, all the records on the split page
will be redistributed among this page and a new added
page at the end of the file, the storage utilization of this page
will suddenly drop to only half of the original storage
utilization. Moreover, this phenomenon will cause that the
performance in the access time and the storage utilization
oscillates after an expansion, To maintain a stable perfor-
mance through the file expansions, many strategics have
been proposed [10], [12], [15], [27]. Among these strategies,
linear hashing with partial expansions as first presented by
Larson [10], [12] is a generalization of Litwin’s linear
hashing [18]. This method splits a number of buddy pages
together at one time and the data records in each of those
buddy pages are redistributed into the related old pages
and the new added page (called a partial expansion). That
is, the doubling of the file (i.e, a full expansion) is carried
out by a series of partial expansions. In [27], they have
proposed another way to perform partial expansions, in
which data records in all of the buddy pages are
redistributed into those old pages and the new added
page. Larson also has presented another strategy to
maintain a stable performance through the file expansions
by changing the expansion sequence [15].

Martin’s spiral storage [21], [25] is a different approach
to dynamic hashing without using an index, in which the
logical address space of a file can be visualized as
shrinking on the left and growing on the right. That is,
when a file is expanded, records in a page on the left are
moved to a new larger space on the right in terms of the
logical address space. Moreover, a logical to physical
address mapping strategy is employed to reuse space
freed on the left for physical implementation. Unified
hashing [24], modified unified hashing [7], and cascading
hashing [8] are also proposed based on the similar idea of
Martin's spiral storage.

In this paper, we propose a new scheme for dynamic
hashing in which the growth of a file occurs at a rate of £
per full expansion, where 7 is the number of pages of the
file and k is a given integer constant which is smaller than n,
as compared to a rate of two in linear hashing. Like linear
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hashing, the proposed scheme (called linear spiral hashing)
requires no index; however, the proposed scheme may or
may not add one more physical page, instead of always
adding one more page in linear hashing, when a split
occurs. Therefore, linear spiral hashing can maintain a more
stable performance through the file expansions and have
better storage utilization than linear hashing. The basic idea
of Hinear spiral hashing is similar to Martin’s spiral storage.
However, while Martin uses an exponential spiral, our
scheme uses a linear spiral. Based on an exponential spiral,
the expected density of records on the left end of the file
will be the highest one and is decreasing from the left to the
right of the file; i.e., the load distribution of the pages is not
uniform all the time [21]. As compared to the exponential
spiral approach, our linear spiral scheme not only reduces
the address calculation cost, but also can provide a much
uniform load distribution due to the linear function. To
reduce the number of disk accesses for overflow records,
linear spiral hashing applies separators [13], which makes
use of a small in-core table to direct search so that the
records in the overflow pages can be retrieved in one disk
access, Therefore, the retrieval of any record in linear spiral
hashing is guaranteed to be in at most two disk accesses.
From our performance analysis, linear spiral hashing can
achieve nearly 97 percent storage utilization as compared to
78 percent storage utilization by using linear hashing,
which is also verified by a simulation study.

The rest of the paper is organized as follows. Section 2
describes the basic idea of linear spiral hashing. Section 3
gives a formal description of linear spiral hashing. Section 4
presents the performance analysis for linear spiral hashing,
Section 5 discusses the simulation results of linear spiral
hashing, and compares it with linear hashing [18] and linear
hashing with partial expansions [10]. Finally, Section 6
contains a conclusion.

2 Basic IbEA

In this section, we describe the basic idea of linear spiral
hashing. First, we briefly describe Martin’s spiral storage
[21], [25]. For convenience, we describe the caseof k=1.Ina
dynamic hashing scheme without using an index, the data
records are stored in chains of pages linked together. A
chain split occurs under a certain condition, for example,
whenever the number of records exceeds a positive integer
value, Based on the spiral storage approach, given a data
record with a key Key, the logical address can be derived by
the following steps:

Key ~>m(Key) — > X

— > Logical address(denoted as V),

where m{Key) is a hash function which distributes the
records uniformly on the interval [0, 1). The value of X is
derived from the function: X = [¢—m(Key)] +m(Key),
where the parameter ¢ is fixed by the file size. ¢ increases as
the file size increases. The range of X is always one unit
from ¢ to (¢ + 1) (i.e., X € [c,c+1)). During file growth or
contraction, the variable ¢ is incrementally readjusted. The
function X may be seen graphically in Fig. 1. Note that as
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Fig. 1. The X function.
Y

Fig. 2. The growth function y = f{X) = 2% used in the spiral storage
approach.

the value of ¢ changes, the interval of X values stays, but the
starting and ending values are ¢ and (¢ + 1), respectively. A
logical address Y is |y|, where y = f(X). As can be seen in
Fig. 2, where y = f{X) = 2%, the growth function f permits
the range of X to grow as the value of the parameter ¢

-increases. The effect of the function is therefore to increase

the logical space dynamically.

While in our proposed linear spiral hashing, given k =1
and the number of initial pages s; = 2, the growth function
can be viewed as show in Tig. 3 based on the given growth
rate “—j;—l, where n is the size of the current file. Based on this
figure, we can derive the related growth functions y = f(X),
as shown in Fig. 4, and their related inverse functions
X =f"y)

Let a split pointer first point to the next logical page to
be split (ie., first is the logical page number of the first
page in the current file), and initially, split pointer first -
points to page 0. When a file is split, the value of ¢ is
readjusted to eliminate the first page by the following way:
of = fYfirst +1). All records in the old first page (left)
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Fig. 3. The growth function i = f{X) when s, = 2and k- 1.

~are remapped into a new larger space on the right. Thus,
both file boundaries move. Table 1 shows the relationship
between the growth of the logical address space Y, where
Y = ly|, and the size of the current file n. Since many
computer systems would have difficulty with a file where
both boundaries move, a logical to physical address
mapping is employed to reuse space freed on the left.
In our approach, we always reuse the freed physical page
for the last new added logical page as shown in Table 2,
where I is the physical address, n is the current file size
and the cross-point of table row n and column P
represents the corresponding logical address Y. (Note that
the physical address P can be derived from the logical
address Y by calling the function physicel as described in
Subsection 3.1 later.)

In linear spiral hashing, a full expansion occurs when
c= f~Hfirst) is an integer. (Note that a full expansion
occurs when a split occurs at a page next to which is a new
added page. In linear spiral hashing, initially, first = 0 and
e = f~Yfirst) = 0, and the range of X of the current file is
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[0, 1); therefore, when the range of X of the current file is
changed to [1, 2), a full expansion occurs. That is, when
e = f}(first) is an integer, a full expansion occurs.) A level
{denoted as ) is defined as the number of full expansions
happened so far and d = [¢]. On each level d, the pages are
split in the order from the small number to the large
number of pages. After all the pages on the current level d
have been split, i.e., after a full expansion, the value of level
d is increased by 1. For each level d, yq4, or 3411 is used to

- locate a page depending on the current value of ¢, where y,

is the growth function used in level 4. (Note that if
m(Key) < (¢ —d), lLe., the page where data record with
key = Key is stored has been split, then y,4 is applied;
otherwise, y; i3 used.) Moreover, there are at most {s; +
(d+ 1)k) pages on level d, where s; is the initial file size and
k is the new added page number per full expansion.

In general, when an insertion causes a splitting, the data
records in page first will be redistributed to pages last and
(last + 1), or pages (last 4+ 1) and {last + 2}, according to the
value of m(Key), where last is the logical page number of
the last page in the current file is equal to ([ya(y; (first) +
1] — 1) {described in Section 4}. Since linear spiral hashing
only adds k more page after a full expansion and & < s¢ {L.e.,
the growth rate is Tﬁf—’“, which is smaller than 2), this scheme
can maintain a more stable performance through the file
expansions and provide better storage utilization than
linear hashing.

3 THE ALGORITHMS

In this section, given an integer constant &k, we give a formal
description of the address computation algorithm for linear
gpiral hashing. We algo describe retrieval, insertion, file
split, deletion and file contraction algorithms used in linear
spiral hashing. In these algorithms, the following variables
are used globally:

b: the size of a home page in number of records;

w: the size of an overflow page in number of records;
first: the split pointer and the initial value = 0;

d: the level, ie., the number of finished full
expansions and the initial value = 0.

b o

3.1 Address Computation

Let sy be the number of pages of the file initially, & be the
number of new added page per full expansion (k < s3), and

y = 2X N<X <l
y=3X -1 14X <2
y=14X -3 2< X <3
= 0K - 6 3< ¥ <4

Xﬂ%j 0<y<?

Xo=u 2<y<h

X = v 5<y<9

X = 9<y < 14
()

Fig. 4. The (a) growth functions and {b) inverse growth functions, when s = 2 and k = 1.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on August 12,2021 at 03:05:48 UTC from IEEE Xplore. Restrictions apply.



972

IFEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11,

NC. 8, NOVEMBER/DECEMBER 1999

TABLE 1
Existing Logical Page Numbers ¥ When ¢y =2 and k=1
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! be the level number. Then the relationship between
growth function g for each level l and variables sq, &, and X
can be computed in the following way by observing the
relationship shown in Fig. 3:

1 = 50X

Y= (s0+RX — K

s = (80 + 2K) X — E(1+ 2

ys = (so+3)X — k(1+2+3);

= (s +IR)X ~ B0 6

yi = (s + k)X — KI5

Let { = [c — m{Key)] and X be I+ m(Key), then g can
be rewritten as follows:

TABLE 2
Placement of Logical Pages When sy =2 and k=1

Nfo [1]2 |3 |4
2 |o |1

303 |1 |2

3 (3 [4]2
413|465
4714 6|5
4|78 |65
507 1816|109
s {7 |8 ]11[10]9
5 (1208 [11[10]9
5 |12{13/11] 109

1
W= %kzﬁ + (30 - k(ﬁ - m(Key))) [+ sym{Key).

Since the value of g may not be an integer, we let ¥; =
] be the logical address. Moreover, the relationship
between y; and 31 can be derived as follows:

=y -+ &+ sy — k + Em(Key).

To compute the final home page number (ie., the
physical address) after d full expansions, function
home_address is defined as follows:

function home_address(Key) : integer;
var

I, Y : integer;

¢, X : real;
begin

e =y (first);

! = e —m(Key)];

X =1+ m(Key),

Y = [p(X)];

home_address = physical(Y, I};
end;

In this function, we have to decide whether y; or y441 is
to be used (ie, | =d or [ =d+1). Therefore, we must
derive the current value of ¢ first by the reverse growth
function y; ' based on the current value of first and d. Then,
we let X be [¢ — m(Key)| + m{Key) and the logical address
Y be |3(X)]. (Note that if m{Key) < (¢ —d}, i.e,, the page
where data record with key = Key is stored has been split,
then {=d+1; otherwise, { =d) Finally, we call the
following function physical(Y,I) to reuse space freed on
the left as explained before:

function physical(Y, [) : integer;
var

low, high : real;

anc_low, anc_high : integer;
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Fig. 5. Physical address mapping.

begin
if Y <s;—1 then
physical =Y
clse
begin
low = g7 (Y);
high =, '(Y +1);
anclow = |y 1(low — 1} ];
aunc_high = [y (high — 1} |;
if anc_low < anc-high then;
physical = physical(anc_low, ! — 1)
else physical = Y — anc_low;
end;
end;

In this function physical(Y, 1), given a logical page Y and
a current level /, it determines the related physical address
[25]. This requires a determination of how the given logical
address was instantiated. There are three possible cases:

1. It was one of the original allocation.
2. It was a reuse of a freed page on the left.
3. It was a newly allocated page.

I[Y < (s9 — 1}, its physical address is ¥, If the page was put
into newly allocated space, its physical address is the
number of pages existent just before its creation. If the page
was put into recycled spacc, one determines its recycled
ancestor and then recurs to find the first allocation for the
ancestor page. This process involves finding the fractional
page addresses, called the ancestor range, which when
deallocated could map keys to the logical page under
consideration. Fig. 5 shows this process graphically.
Consider page Y. The range of keys mapping to page Y is
from the lower boundary at low up to high. The range of
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keys which will be remapped into page Y lies at boundaries
one below from (low — 1) to (high — 1). This is because the
active keyspace range is always one unit long from ¢ to
(c+1). One can map from X back to the page ancestor
addresses by the following computation:

lowest_ancestor = yp_y (low — 1), and
highest_ancestor =y (high — 1).

The actual lower page is anclow = |lowest.ancestor],
and the higher page is ane_high = |highest_ancestor|. The
ancestor range mapping to a page is always smaller than
one unit page. This is true since a deallocated logical page is
always mapped to a new larger space. When a page is
totally deallocated, that space can be immediately reuse. We
need to determine whether the low ancestor address and
high ancestor address are within the same page, Since pages
always expand to a larger space,

lowest_ancestor — highest_ancestor < 1.

Thus, if anchigh > anclow, then page ¥ was instantiated
from "the recycled page anclow. Otherwise, page Y was
instantiated from newly allocated space.

If page ¥ was instantiated with a newly allocated page,
one needs to know the number of active locations when it
was instantiated. This is given by (Y — anc.low), since ¥
was then the last page and anc_low was the initial page at
that time. If the page was instantiated from a recycled page,
the problem reduces to find how this recycled page was
instantiated. The address is always reduced and the
recursion completes.

The above recursive function can be rewritten in the
following way without recursion:

function physical(Y, i) : integer;
var
z, anc_low, anc_high : integer;
low, high : real; :
begin
anc_low =Y;
repeat
z = anc_low;
if % <sy —1then
physical = z
else
begin
low = " (2);
high = 37 ' (# - 1);
anclow =y (low — 1) |;
anc_liigh ={m .1 {high — D [;
end;
until{anc_low > anc_high);
physical = z — anc_low;
end;

3.2 Overflow Handling and Retrieval

In [15], Larson applied separators [13] for home pages to
linear hashing to guarantee that any data record can be
retrieved in one disk access, where overflow records are
distributed among the home pages. This method,
separators, is based on hashing and makes use of a small
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in-core table, for each home page if needed, to direct the
search. To understand what a separator is, let's define a
probe sequence first [15]. Assume that all of the data
records are stored in an external file consisting of =
pages, and each of those n pages has a capacity of b
records. For each data record with key = Key, its probe
sequence, p(Key) = (p1(Key), pa(ey), ... pu(Key)), (n 2 1),
defines the order in which the pages will be checked
when inserting or retrieving the record; that is, every
probe sequence is a permutation of the set {1,2,...,n}. For
each data record with key = Key, its signature sequence,
s(Key) = (51(Key), sa( Key), ..., sp(Key)), 1s a ¢ — bit inte-
ger. (Note that g > 1 and ¢ should be large enough such that
signatures of all data records can be in {0,(2¢ —2}} [13],
[15].) When a data record with koy = Key probes page
pi(Key), the signoture s;(Key) is used, 1 <¢ < n. Imple-
mentation of p(Key) and s(Key) are discussed in detail in
[13]. Consider a home page j to which v,r > b, records
hash. In this case, at least (r — b) records must be moved out
to their next pages in their probe sequences, respectively.
Only at most b records are stored on their current signatures,
and records with low signatures are stored on the page
whereas records with high signatures are moved out. A
signature value which uniquely separates the two groups is
called a separator, and is stored in a separator table. The value
stored is the lowest signature occurring among those records
which must be moved out. {Note that a separator table has
two entries: one is a separator value and the other one is a
pointer to a page. And, the initial values of separators are
strictly greater than all signature values, For example, using
g bits as described before, the initial values of separators are
set to {29 — 1), meaning that their corresponding pages are
empty, initially [13], [15].)

Since, in [15], overflow records are distributed among
the home pages, the costs of file-split, insertion, and
maintaining separators will be expensive. To avoid this
disadvantage and efficiently search a data tecord stored
in overflow pages, linear spiral hashing also applies
separators but only for overflow pages. To apply separafors
to handle overflow pages in linear spiral hashing, we
need the following modification. Assume that for each
home page i, its overflow records are stored in an
external file consisting of m pages, and that each of these
m pages has a capacity of w records. For each overflow
record of home page i with key = Key, let its probe
sequence be pi(Key) = (pu(Key), po{Key), .., pm{Key)) =
(1,2,..,m), m > 1. (Note that to increase storage utiliza-
tion, we will probe overtlow page j only when overflow
pages 1,2, ..., (j — 1) are full.} For each overflow record of
home page i with key = Key, let its signature sequence be
5i(Key) = (sp(Key), su{Key), ..., sin(Key)). When an over-
flow record of home page i with key = Key probes page
py(Key), the signature si;(Key) is used, 1 < j < m. More-
over, when the external file for the overflow records of a
home page is full, first, we have to add a page at the end of
the external file. Next, all the probe sequences and signature
sequences of the data records on this home page and its
overflow pages have to be extended and recomputed to
include this new added page. That is, the number of
overflow pages for a home page, m, will be changed,

NO. 6, NOVEMBER/DEGEMBER 1999
depending on the number of overflow data records of a
home page [15]. By using separators and the above
modification, any data record can be found in at most two
disk accesses.

Ags a file grows, the total size of separator tables of all the
home pages (which have overflow pages) can be too large to
be loaded into main memory at the same time. Moreover, to
reduce the number of disk accesses for loading a separator
table for a certain home page which has overflow pages, we
store a separator fable in each home page. A separator table is
loaded into main memory whenever its related home page
is read into main memory, and it is written back to the disk
whenever its home page is written back to the disk. In the
case that there is no change for the data records in the home
page but a data insertion/deletion has caused data record
movements between overflow pages, the related home page
still should be written back to the disk before it is removed
from main memory. That is, one more disk access is needed
in this case, since the contents of the separator fable has been
changed. Therefore, we still can guarantee that the cost of
dafa retrieval is at most two disk accesses. As shown in
Fig. 6, the function retrieval(key) is used to locate the actual
physical address (either in a home page or one of its related
overflow pages), where separator;;, 1 < j < m, represents
the separator for the jth overflow page of home page 4.

In this function, home page i is searched first, which is
one disk access. If the data record cannot be found in home
page i, its overflow pages are tried by using separators. If the
data record exists in those overflow pages, one more disk
access is needed; otherwise, 0/1 more disk access is needed.
Therefore, at most two disk accesses are needed.

3.3 Insertion and File Split

When a data record is inserted, its home page is searched
first. If the size of its home page has exceeded the page
size b, then cne of its related overflow pages is searched
according to its probe sequences. In the case that a data record
insertion causes relocations of some other records in
overflow pages, related separators which are stored in the
home page may also have to be updated. Moreover, when
the external file for the overflow records of a home page is
full, we add a page at the end of the external file and all the
probe sequences and signature sequences of the data records on
this home page and its overflow pages have to be extended
and recomputed to include this new added page. In this
case, one more disk access is needed to write the home page
back to the disk, since the separator table is included in the
home page.

Whenever the number of inserted data records exceeds
a predetermined split control condition, a split occurs. In
this case, data records in page first (including its
overflow pages) have to be redistributed to pages last
and (last + 1}, or pages (last +1) and (fast +2), depend-
ing on the value of m{Key), where last is the logical page
number of the last page in the current file. Then, first is
increased by one and new level d is computed. The
results of the above actions are equal to update first (and
d) first and then reinsert those data records which are in
the page where the old first points to by using the new
hashing function y441. Next, we show how lo derive the
current level { given the value of y. Since the growth rate
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function retrieval(key) : pointer;

Fig. 6. Function refrieval.

of the file is always “!%, when n is the size of the current
file, the following formula shows how y is bounded after
(I— 1} full expansions:

sod(so4+k) oA (o (I -1Lk) <y
< 8p+ (80 +E)+ . + (50 + [E);

sot(s+k)+.Fls+ -1 <y
Therefore, given a value y, ! can be computed as follows:
k% + (289 — k) — 2y < O

(k— 2s0) + 1/ (250 — k)" + 8ky
< -

2% ;

=

{(k - 250) + 1/ (250 ~ k)* + SF:@;J |

2k

The description of procedure file_split is shown in Fig. 7.
{Note that to reduce the number of disk accesses, we use a
buffer mechanism to reduce the overhead of reinsertion.
That is, we first perform the reinsertion in a buffer. Then,
we write one page back to disk from the buffer at a time,
instead of reingerting one data record back to disk at a time
in the process of reinsertior.)

3.4 Deletion and File Contraction

When a data record is deleted, we immediately try to move
another data record to fill the hole left by the deleted data
record. There are two cases. First, if the deleted data record
is stored in a home page which has overflow pages, we only
move one of the data records stored in the last overflow
page (i.e., overflow page m) back to the home page and fill
the hole, by the way, the separators must be updated.

/* function physical_address returns the actual physical address of home page i */

if data record is found in page pointed by separator;; .pointer

/* nil denoctes that the record is not found */

var i, J : integer;
hegin -
- i = home_address(key);
if data record is found in page i then return( physical.address(i) );
else
begin
for each entry j in the separator table i do
begin
if sg;(key) < separatory T.value thenr
begin
then return (separator;; {.pointer)
else return (nil);
end;
end;
return (nil);
end;
end;

Second, if the deleted data record is stored in the overflow
page i(1 < 4 < m), we should move one of the data records
from overflow page (¢ + 1) back to fill the hole created by
the deletion in overflow page i, In the same way, the hole
created by the above movement in overflow page (i + 1}
will be filled by moving one of the data records in overflow
page (i + 2), This process will not be terminated until one of
the data records in overflow page m is moved back to
overflow page (m — 1). In this process, the related separators
must also be updated.

Whenever the number of deleted data records exceeds a
predetermined contracted control condition as in file split, a
contraction occurs. In this case, we should collect the data
records which have been redistributed in the last file split
operation back to page [ first — 1). Since when a split occurs
in page (first — 1), the data records in page (first — 1)
(including its overflow pages} have to be redistributed to
pages (fast — 1) and lasi, or (last —2), (last — 1) and last,
depending on the vatue of m(Key), where last is the logical
page number of the last page in the current file. Therefore,
when a contraction occurs, we should collect those data
records which were stored in page ( first — 1) before the last
file split but now are stored in those pages mentioned
above, and move those data records back to page
{first —1). The results of the above actions are equal to
update first (and d) first and then reinsert all the data
records stored in those above pages. (Note that for those
data records in pages last, (last — 1) and (last — 2), they
may not be moved out from page (first — 1) and we do not
record any information about the original page for each
data record in a page; therefore, we have to compute the
home address for each data record in those pages to
determine iis original page from which the data record was
moved out.) The description of procedure file_contraction
is shown in Fig. 8.
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procedure file split();
var i, j © integer;

begin

B : buffer;

read page first and its averflow pages into huffer B;
set page first and its overflow pages to empty;
first = first + 1;

- o— {3
d= L(k 2s0)+4/(200— k)2 48k fn'a!J:

for each record wigtkh key = Key in buffer B do
begin
i = home_address(Key);
if home page 1 is not full then
write this record to home page 1
else
begin
find an entry j in separator table i such that s;;(Key) < separator;; ].value;
if not found then /* the overflow pages are full */
begin
append an overflow page to the external file of home page i:
recompute the probe sequences and signature sequences;
end; :
find an entry j in separator table i such that s;;(Key) < scparatori;1.value do
begin
if the page pointed by separator;; T.peinter is full then
move out the record whose key is separator;; ].value to Buffer B;
write the data record with key = Key to the overflow page pointed
by separator;; |.pointer;
updated separator;; T.value if necessary;

end;
end:
end;
end;

Fig. 7. Procedure fite_split.

4 PERFORMANCE ANALYSIS

In all dynamic hashing schemes without using an index, a
split occurs under a certain condition. There are two kinds
of strategies [3], [18]: uncontrolled and controlled splitting.
The uncontrolled splitting means that a split occurs
whenever a collision occurs. In the controlled splitting, a
split occurs when the number of inserted data records
exceeds a load control (L), or when storage utilization
exceeds a load factor {A), 0 < A < 1. (Note that a load
control denotes the upper bound of the number of new
inserted records before the next split can occur, and a load
factor is a storage utilization threshold.) In general, the
controlled strategy can provide better storage utilization
than the uncontrolled strategy, which is verified in [18].
Moreover, when the load factor is used as the split control
strategy, the system will suffer more unstable performance
during a full expansion as stated in [10], [27]. Therefore, we
prefer to use the load control as the split control strategy as
that in [27], [28].

In this section, we present the performance analysis of
linear spiral hashing by using the load control strategy. In

this performance analysis model, we assume that the keys
for data records are uniformly distributed and independent
to each other, and the page size is measured in number of
record slots. The hash function which distributes the
records uniformly on the interval [0, 1). The size of a homé
page is dencted by b and the size of an overflow page is
denoted by w. The overhead for updating separator tables for
home pages is ignored. We also assume that the number of
overflow pages for each home pages is minimum. In other
words, if a home page has 1,¢ > ), overflow records then
there will be [L] overflow pages for this home page. When
the search cost is computed, all records are assumed to have
the same probability of retrieval.

Let s¢ be the number of pages of a file initially and N
be the number of data records inserted into the file.
Given N, we are able to derive information about the
current state of the file, such as the number of used home
pages, first, the average retrieval cost and the storage

‘utilization, that is, to analyze these properties of a file as a

function of N. The various properties that we are interested
are discussed as follows.
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procedure file_contraction();
var i, j @ integer;
B : buffer:

thm

first = first ~ 1;

(k- 2.!n)+\/ 2ag—k)?-+8kn first
=1 2% i

begtn
i = home address(Key):
if home page i is not full then

else
begin

begin

end;

begin

by separatory | .pointer;

end;
end;
end;
end;

read pages last and (last-1) and (last-2) and their overflow pages into buffer B;
set pages last and (last-1) and (last-2) and their overflow pages Lo empty:

for each record with key = Key in buffer B do

write this rcrord to home page i
find an entry j in separator table i such that s;;(Key) < separator;; [.value:
if not found then /* the overflow puges are fuil */

append an overflow page to the external file of hame page £
recompute the probe sequences and sighature sequences;

find an entry j in separalor lable i such that &;;(Key) < separator; [ .value do
if the page pointed by separator; [ pointer is full then
move oul the record whose key is separator;;].value to Buffer B;

write the data record with key = Key 1o the overflow page pointed

updated separator;; [.value if necessury;
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Fig. 8. Procedure file_coniraction.

The number of splits performed is given by

ns(N) =0, 0 <N < (sol))

ns(N) = {il—sﬂ—lij, N > (sL).

(Note that to reduce the number of splits, we assume
that the split control is started when the first s, pages are
filled with sy * L records in the performance analysis.) In
linear spiral hashing, the value of first is equal to the
number of splits, ie., first = ns(N). Since, in linear spiral
hashing, the growth rate of a file is %’—!k, the number of level
can be computed by the following formula as derived in
Section 3.3, given Y = firsi = ns(N) :

[(,"«' — 2s0) + \/(250 — k)2 + 8k % first
2k

Since the range of X for the current file is always
between ¢ and (e-+ 1}, and #(c) = first = ns(V), based on
the current value of firsi, we can derive the value of last,
which the last logical page of the current file, by the
following way:

c=yt (first);
UV=1+1;

last = [yp{e+ 1] - 1.

Consequently, the number of pages of the current file is
(last — first+1).

The probability Pr{first,i) of load distributions for
logical pages i, given the value of first, are different in
linear spiral hashing as shown in Table 3. In general, after a
full expansion, i.e., after level | is increased by one (or when
v (first) is an integer), the probability Pr{first,d) is the
same in each page ¢ of the current.file, and is equal to m .
first <i < last; that is, the data records are uniformly
distributed in the file. During the process of a full
expansion, let median be y(I'), where I' =1+ 1, then the
probability Pr(first,i) can be divided into the following
three classes:

1
Pr(first,1) = e Ffirst <1 < median;
1
Pr(firat,i) =——, median-+1<i<lasl—1;
S0 - Ik
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TABLE 3
The Probability of Load Distribution
lovel logical page number( Y)
O ToTi 23 Tals 678 ]o [1o[11]12
o L2014 /i
AL %
2 AlALA
113 AVAVAYE
4 AVAVAVS
5 AV VAV,
K AVAATAR
7 VRV AV AL
8 AVAVAVAYS

median — first + 1

irst,i) =1
Pr{first, 1) ey

last — median — 1 i — last
_——————— i = last,
sp+ Ik ’

The pages between first and median are not split yet in the
current level [; therefore, the probability Pr(first, <) of each
of those pages is still the same as the probability after { full
expansions. The pages between (rmedion + 1} and (last — 1)
are newly added during the process of the (I +1)th
full expansion; therefore, the probability of each of those
pages is the same as the probability after (I+1) full
expansions. For page last, Pr(first, last) is equal to the
remaining value.

After computing the probability Pr(first,i) for each
page ¢ of the current file, we can start to analyze the other
performance measures. Let W (¢} be a function to denote the
number of overflow pages of a home page with ¢ data
records inscried and be defined as follows:

|

Note that, since we store the separator table in the home
page, the used space SU for the separator table is

al)

t—b

(I
data records, where the size of a data record is sd times of
the size of a separator entry (including the separator value
and the pointer). Let Bin(t; N,P) denote the binomial
distribution, i.e., Bin(t; N, P) = (CNP*(1 — P)"™). The prob-
ability for logical page ¢ (first < i < last) containing ¢ data

t+SU-b
w

W(t) = [

records is Bin(t; N, Pr(first,1}). The expected number of
overflow pages for logical page ¢ is obtained as:

i(W(t)Bin(t; N, Pr(firsi,i))).
=0

OP(N) =

Then, the average number of overflow pages for the file
after inserting N data records is given by:
fasi
it OPI(N
OP(N) _ Ez—famt ‘ ( ) ’
last — first +1
and the storage utilization can be obtained as follows:

N
(last — First + 1)(b+ wOP(N)Y

By using separators for handling overflow records, the

UTI(N) =

expected cost of an unsuccessful search for home page
i{ first <1 < last) in terms of the number of disk accesses is:

US; =1, or; =0,

Us; =2, OF; > 0.
Then, the average number of disk accesses for an
unsuccessful search is given by:

last

Y (US(N)Pr( first,i)).

i=fipat

US(N)

For the successful search, we first consider the expected
number of disk accesses for retrieving all the data records in
home page i(first <i<last) plus its overflow pages,

which can be obtained by:
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b

RA,(N) = Z(tBin (t, N, Pr(first,i)))

—0 u
+ 37+ (¢ — )Bint, N, Pr(first, i}).
t==i4-1

Then, the average number of disk accesses for a
successful search can be calculated by:

{nst

i et L2V
@N .

For the average insertion cost, we first consider the split
cost at the insertion of the #th (¢ < N) data record, which is
given by:

SS(N) =

SC(t) =1+ 0P(1) +2(1 + OP(t + 1))

(Note that, since we apply a buffer mechanism, (1 + OP(t))
disk accesses arc need to read the split page and its
overflow pages into the buffer, and 2{14 OP(f + 1)) disk
accesses are needed to write the split results.)

Since a split' occurs only when ¢ is (L, 2L, ..,
ns(N)L{ns(N)L < N)), the total split cost for N inserted
data records can be obtained by:

s N)

Zwu:

Then, we consider the average cost of inserting a data
record when there are ¢ data records which have been
inserted. (Note that given the number of data records ¢, we
can obtain the corresponding split pointer sp/ and the
number of full expansion #/ as explained before.) Since a
data insertion may causc the other data records to be
reinserted, the average number of disk accesses for inserting
the (¢ 4 1)th data record in page i is as follows:

TSC(N) =

ACi(t) =
25(1 + OP:(£)) + 2325 ) 4 (0.5)(2w)(2)
b+ w(OPF(t) — 1) + 0.5w

zb( + OP{)) + w(OF(t) — 1){4 + OP(t)) + 2w
b+ w(OB(t) — 1) 4 05w ‘

Note that there are OF;(t) overflow pages of home page
i, and each of overflow pages has w records, expect the last
overflow page. We assume that the number of records in
the last overflow page is 0.5w on the average. Consequently,
the total number of records which are stored in home page 4
and its overflow pages is (b + w(OF{t) — 1) 4 0.5w). When
a record is inserted into the file and the home address of
this record is page i, there are (14 OR(1)) possible
positions in which the record is inserted. Let’s consider
the case in which a record r is inserted into home page ¢,
which causes another record y in home page 7 to be moved
out to overflow page 1. Then, one record which has been
stored in overflow page 1 has to be forced to move out to
overflow page 2, and so on. For this case, the total number
of pages which have to be updated for inserting a record in
home page i is (1 + OP(1}}), L.e,, the number of read/write
operations is 2(1 + OF;(1}). Since there are b records which
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are stored in home page 4, the total number of read /write
operations for inserting a record after these b records in
home page ¢ is 20(1 + G4%5(1}). In the same way, when a
record in inserted into overflow page 1, one record in
overflow page 1 has to be moved out to overflow page 2,
and so on. The number of overflow pages which have to be
updated s OP;(t). Moreover, since the separator table
which is stored in home page ¢ has been changed, one more
page (i.e., home page 1) has to be updated. Therefore, the
total number of read / write operations for inserting a record
after these w records in overflow page 1 is 2w(l + OF{#)).

In general, for inserting a record in overflow page
kil < k< OF(1)), the total number of read/write opera-
tions is 2w{l + (OP(t) — k +1)). The reason is that the
overflow pages that have to be updated are overflow pages

E, (k4 1), ...,08()). Therefore, the number of thesc up-
dated pages is (OF{t) — k + 1). Since the separator table in
home page ¢ has been changed, home page 7 also has to be
updated. Finally, in the last case (case (1+ QF(1)), for
inserting a record into the last overflow page OP(t), the
total number of read/write operations for these records
q(q < w) which are stored in overflow page OPF(t) is
2¢(1 + 1). For simplification, we let ¢ be the average value .

Then, the average number of disk accesses for inserting a
data record in any page 4 among those (574 1) pages is
given by:

st

ACH) = Z Plspr, 1, 8N ACi ().

i=0

Finally, we can obtain the average insertion cost in the
insertion process of N data records (including the split
cost), which is given by:

TSC(NY + z;" ) AO(f

INS(N) =

Table 4a shows the results derived from the above
formulas, where k=1,5 =2 N =105 b= 10,2040,
and 80, w == 0.5b, and L = 0.85, £, = b, and /. = 1.2b in linear
spiral hashing. From this table, we observe that the storage
utilization can be up to 99 percent, where the cost of
successful and umnsuccessful search is in terms of the
number of disk accesses.

5 SIMULATION RESULTS

In this section, we show the simulation resulis of linear
spiral hashing, linear hashing [18] and linear hashing with
partial expansions [10], under two different split control
strategies. In this simulation study [27], we assume that IV
input data records are uniformly distributed. The environ-
ment control variables are the size of a home page (b) and
the size of an overflow page (w) and a load control ()
which controls when a split should occur. In this simula-
tion, the starage utilization and the average number of disk
accesses for successful and unsuccessful searches are the
main performance measures considered. Moreover, over-
flow pages arc handled by separators in all these
approaches. When the average successful/unsuccessful
scarch cost is concerned, we consider 2N search requests,
where N searched data records are present in the file and
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TABLE 4
Performance: (a) Analysis Results; (b) Simulation Results
Parameters Analysis Results Parameters Simulation Results
b w L INS s us uti b w L INS  ss us uti
0 5 8§ 16.5 1.874 2.000 0.968 10 5 8 16,2 1.884 2000 0.966
0 510 17.0 1.892 2,000 0.993 1 5 10 17.1  1.894 2.000 0.992
w0 5 12 17.7 1909 2.000 0.984 0 5 12 17.9 1.905 2.000 0.980
20 10 16 10.3 1,825 2.000 0.953 20 10 16 10.1  1.820 2.000 0.966
20 10 20 109 1.844 2.000 0.954 20 10 20 10.8 [.849 2.000 0,952
20 10 24 113 1.852 2.000 0957 20 10 24 11.5 1.859 2.000 0.956
40 20 32 6.7 1755 2.000 0917 40 20 32 6.7 1.759 2.000 0917
40 20 40 7.0 1774 2.000 0.955 40 20 40 7.2 1779 2,000 0.961
40 20 48 7.7 17193 2,000 0.956 40 20 48 7.8 1.799 2.000 0.952
80 40 o4 4.6 1.650 2.000 0.892 80 40 o4 4.7 1.652 2,000 0.892
80 40 80 5.1 Le72 2,000 0.895 80 40 80 51 1.679 2,000 0,892
80 40 96 56 1.719 2.000 0911 80 40 96 55 1719 2,000 0.909
(@) ()
b :the size of a home page INS  :insertion cost

w : the size of an overflow page

L. : load control

the other N searched data records are absent. When the
‘average insertion cost is concerned, we consider the average
result of 10 random different insertion sequences.

Table 4b shows the simulation results of linear spiral
hashing, where k= 1,5y =2, N = 10% w= 0.5, and I =
0.85, I = b, and L = 1.2b, respectively. Compared with the
analysis results shown in Table 4a, the simulation results
shown in Table 4b are very close to those shown in Table 4a,

Simulation results of linear spiral hashing, linear hash-
ing, linear hashing with two partial expansions per full
expansion and linear hashing with three partial expansions
per full expansion under the split control of the load control
I are shown in Table 5a, Table 5b, Table be¢, and Table 5d,
respectively, where k=1, 5 =2, N =108, w = 0.5, and
L=08bh, L=5>, and L =1.2b. From these tables, we
observed that as the sizes of a home page and an overflow
page are increased, storage utilization may be decreased in
all these four methods. The reason is that the larger the size
of a page is, the larger the average unused space in a home
page or an overflow page may be, which resulting in a
decrease of storage utilization. Linear spiral hashing has the
highest storage utilization among these four methods.
When 6 =20, w=10, and L =16, linear spiral hashing
can achieve nearly 97 percent storage utilization, as
compared to 78 percent storage utilization in linear hashing,
and in lincar hashing with partial expansions under the
same conditions. (Note that linear hashing with partial
expansions was propesed to improve the retrieval perfor-
mance of linear hashing since it can provide more stable
performance oscillation than linear hashing during a full
expanston. However, based on the same reason, linear

ss 1 suceessful search cost
us unsuccessful search cost
i storage utilization

hashing with partial expansions will result in higher
average insertion cost than linear hashing as stated in
[10], [12], [27], [28]. Moreover, linear hashing with partial
expansions does not give any large help in improving
storage utilization of linear hashing.) Under a fixed N, as L
is increased from 8 to 96, the number of file splits is
decreased, which results in a decrease of the average
insertion cost in all these three methods. Moreover, the ratio
of the average insertion cost of linear spiral hashing to that
of linear hashing is decreased from:

16.2

5.5

2.9
= 2.9) to — {= 1.1
(4 29) to 7= (~ 1.1),

when £ is increased. The reason is that, when I is
increased, the ratio of the number of newly added pages
of linear spiral hashing to that of linear hashing is
increased under a fixed N. (Note that this ratio is always
smaller than 1.) Cbviously, since storage utilization and
the average insertion cost (and the average retrieval cost)
are always a trade-off, linear spiral hashing will need
higher average insertion cost and average retrieval cost
than the other three methods.

Fig. 9 shows the relationship between storage
utilization and the number of inserted data records in
linear spiral hashing and linear hashing, where k = 1,59 =
2, b=10,w =25, and . = 8. From this figure, we observe
that linear spiral hashing has more stable and higher
storage wtilization than linear hashing. That is, the oscilla-
tion in performance during a full expansion in linear spiral
hashing is smaller than the one in linear hashing. The
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TABLE 5
Simulation Results Under the Split Control of the Load Control (£): (a) Linear Spiral Hashing; {b) Linear
Hashing; (c} Linear Hashing with Two Partial Expansions; (d) Linear Hashing with Three Partial Expansions

E@ncters " Linear Spiral Hashing - Parameters | Lincar Hashiﬁé : ]
| b ow L INS 88 us uti || b w L NS ss us o oui
10 5 8 162  1.884 2.000 0.966 10 5 8 2.7 1010 1.040 0788
10 510 7.1 1.89%4 2.000 0992 10 510 29 1136 1.434  0.838
10 512 179 1905 2.000 0.980 10 512 3.1 1.243 1.699 0858
20 10 16 10.1. 1.829 2.000 0.966 20 10 16 25 1012 1.034  0.781
20 10 20 10.8  1.849 2.000 0.952 20 10 20 27 1143 1.423 0,784
20 10 24 1.5  1.859 2.000 0.956 20 10 24 2.8 1.233 1.677 0.784
40 20 32 6.7  1.759 2.000 0917 40 20 32 23 1.002 1.003  0.781
40 20 40 72 1779 2.000 0.961 40 20 40 25 1145 1.407 0.781
40 20 48 78 1799 2,000 0952 40 20 48 27 1.234 1.656 0.781
80 40 o4 47 1.652 1.963  0.892 80 40 64 22 1.001 1.003  0.757
80 40 80 5.1 1.679 2.000 0.892 80 40 80 24 1132 1376 0.781
80 40 96 55  1.719 2.000  0.909 80 40 96 26 1222 1.938 0,781

(@) {b)
Parameters | Linear Hashing with Two Par. Exp. _f'aramcters Lir}earul-;ashing with Three PaITEi(p.
b w L INS 58 us uti |} b w L | INS 88 us uti
10 5 8 3.1 1.015 Lo47  0.790 10 5 8 3.1 1.015 1.114  G.790
10 510 33 1144 1.445 (1858 10 510 3.4 1.136 1445 0.858
10 512 35 1.243 1697 0.858 0 512 335 1.243 1.610  0.863
20 10 16 27 1.016 Lo46  0.781 20 10 16 27 1.026 1.526  (.781
20 10 20 29 1.153 1.438  0.784 20 10 20 29 1038 1.786 0.784
20 10 24 31 1.241 1.680  0.784 20 10 24 3.1 1159 1.957 0.784
40 20 32 24 1.011 1.031 0781 40 20 32 24 1.025 1.656 0781
40 20 40 26 1.154 1.438 0.781 40 20 40 2.6 1.038 1.936  0.781
40 20 48 28 1.245 1.686 (.781 40 20 48 28 1.160 2000 0.781
80 40 o4 23 1.000 1.000  0.781 80 40 o4 23 1.024 1.666  0.781
80 40 80 2.5 1157 1.436  0.781 80 40 80 25  1.038 1.958 0.781
80 40 96 27 1247 1.686  0.781 80 40 96 27 1.160 2,000 0724

(© (@)

b : the size of a home page INS :insertion cost

w : the size of an overflow page

L :load control

reason is that when a split occurs, linear hashing always
redistribute data records of a certain page 4 into page ¢ and a
new added empty page. The property of stable storage
utilization in linear spiral hashing has distributed the
overhead of insert/split operations uniformly as data
record are inserted, while the unstable storage utilization
in linear hashing may suddenly cause a large overhead of
insert/split operations.

ss @ successfal search cost
us  :unsuceessful search cost

uti - storage utilization

Recall that the growth rate of linear spiral hashing is “*
per full expansion, which is not a constant since n is
changed during file growth, where n is the current size of
the file. To compare the average insertion /retrieval cost in
linear hashing and linear spiral hashing when both
approaches achieve the same storage utilization, we try to
run linear hashing under different choices of L. Table 6
shows that storage utilization in linear hashing can be
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Fig. 9. The relationship between storage utilization and the number of inserted data records.

increased as L is increased, at the cost of increasing the
average retrieval cost, where k=1,5 = 2,0 = 20,w =10,
and N = 10%. From this table, we observe that when both
approaches have the same average unsuccessful search cost
(L = 31 in linear hashing), linear spiral hashing has higher
storage utilization but a higher average insertion cost and a
higher average successful search cost than linear hashing.
Moreover, when both approaches have the similar
average insertion cost (L =93 in linear hashing), linear
spiral hashing has higher storage utilization but a higher

average successful search cost than linear hashing. When

both approaches have the same storage utilization (L = 106
in linear hashing), linear spiral hashing can have a lower
average insertion cost but a higher average successful
search cost than linear hashing. The reason is that, as L is
increased a lot in linear hashing, the number of file splits is
decreased in linear hashing. Therefore, given a fixed N and
the same storage utilization, the number of home pages in
linear hashing is less than the one in linear spiral hashing,
When both approaches have the same average successful
search cost.(L = 126 in linear hashing), linear spiral hashing
has a lower average insertion cost but lower storage
utilization than linear hashing,.

Table 7 shows the simulation results of linear spiral
hashing and linear hashing under the split control of the
load factor (4}, where:

k=1,80=2N=10%0b =10, and w = 5.

In linear hashing, as A is increased from 0.5 to 0.95, the
average insertion cost is increased. The reason is that as A is
increased, the number of overflow pages is increased. While
in linear spiral hashing, only ene new home page is added
to the file after a full expansion, instead of » new home
pages in linear hashing, which results in higher storage
utilization. Therefore, almost a split occurs after a data
record is inserted because the storage utilization in linear
spiral hashing always exceeds the load factor, which results
in a higher average insertion cost than the one in linear
hashing. Although the number of splits in linear spiral
hashing is larger than that in linear hashing, the number of
home pages in linear spiral hashing is less than that in
linear hashing which results in a higher average rettieval
cost in linear spiral hashing as shown in Table 7. Moreover,
when A > 0.85, linear hashing cannot retain the storage
utilization up to A. The reason is that the higher A is, the
higher the ratio of performance oscillation during a full

TABLE 6
The Relationship Between Performance and L in Linear Hashing

Load Control INS 58 us uti

L=20 2.92 1.153 1.438 0.784

L =30 4,00 1.347 1.968 0.784

L =31 4,11 1.359 2.000 0.784

L =60 7.82 1.669 2.000 0.888

L=90 10.60 1.779 2.000 0.934

L=93 10.90 1.789 2.000 0.938

L=100 1158 1799 2000 0943 L+ load control

INS ; insertion cost

L =106 12.13 1.819 2000 0952 ss ¢ successful search cost

L =120 13,70 ].839 2.000 0.961 us i unsuccessful search cost

L= 126 1435 1849 2000 0961 uii ; storage utilization
linear spiral 10.82 1.849 2.000 09352

L=20
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TABLE 7
Simulation Results Under the Split Control of the Load Factor (A)

Load Factor Linear -Spiral Hashing Lincar  Ilashing a
A T INS 7£;77us17 :,,, uti INS 88 us oui |
0.50 11.28 1.550 2.000 0.890 2.62 1.000 1.000 0.300
0.55 11.31 1.550 2.000 0.892 2,60 L.00G 1.000 0.549
0.60 11.35 1.550 2.000 0.896 2.61 1.000 1.000 0.599
0.65 11.42 1550 1,989 0.901 2.66 L0O0O0 1000 0.649
0.70 11.58 1.555 1.994 0.901 2.73 1.000 1.000 0.699
0.75 11.76 1.560 2.000 0.913 2.85 1.000 1,000 0.746
0.80 12.09 1.563 1.992 0.921 3.00 1.032 1.093 0.860
0.85 12.78 1.580 2.000 0.956 3.17 1.115 1.337 0.849
0.90 13.53 1.629 1,998 (1.892 3.35 1.324 1.904 (.858
0.95 13.97 1.760 2.000 0.947 3.28 1.671 2,000 0.892

A load factor

INS : insertion cost

expansion in lincar hashing to the one in linear spiral
hashing is. '

In linear spiral hashing, under the split control of the
load confrol L and k=1, nL more data records are
distributed into (n+1 ) home pages per full expansion,
instead of 2n home pages in linear hashing, which results in
better storage utilization in linear spiral hashing than the
one in linear hashing as has been proved by both analysis
and simulation results, However, high storage utilization
implies that there may be many overflow pages for each
home page, resulting in a large number of disk accesses for
data retrieval and insertion operations. Therefore, we look

y
A
1200 A
1000 1
finear hashing
800
600
~~~~~ T J=12
400 - e Y
200 - i =
J s e ]
0 h -
c

Fig. 10. The growth functions in linear spiral hashing and linear hashing.

ss : successiul search cost
us : unsuceesstul search cost

uti : storage utilization

for a compromise between high storage utilization and fast
data retrieval. Fig. 10 shows the growth functions with
different values of & in linear spiral hashing and the growth
function in linear hashing. As k is increased in linear spiral
hashing, the number of new added logical pages is
increased, which results in a lower average refrieval cost
and a lower average insertion cost but lower storage
utilization than linear hashing. On the other hand, as k is
decreased in linear spiral hashing, the number of new
added logical pages is decreased, which results in higher
storage utilization but a higher average retrieval cost and a
higher average insertion cost than linear hashing. That is, if
we care about fast retrieval (and a low average insertion
cost) more than high storage utilization, we choose a k with
a large value in linear spiral hashing, Therefore, linear
spiral hashing provides a flexible choice between these two
requirements.

6 CONCLUSION

In this paper, we have proposed a new scheme (called linear
spiral hashing) for dynamic hashing in which the growth of
a file oceurs at a rate of 2t per full expansion, where n is the
number of pages of the file and £ is a given integer constant
which is smaller than n, as compared to a rate of two in
linear hashing. Because the growth rate of a file is less than
two, linear spiral hashing can provide better storage
utilization than linear hashing [18]. Moreover, linear spiral
hashing can maintain a more stable performance through
the file expansions than linear hashing. From our mathe-
matical analysis and simulation study, linear spiral hashing
with & = 1 can achieve nearly 97 percent storage utilization
as compared to 78 percent storage utilization by using linear
hashing. As compared to the schemes based on the spiral
storage approach [25], linear spiral hashing not only has
reduced the cost for address calculation, but also has a
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much uniform load distribution due to the linear growth
function. Moreover, to compute the logical addresses, no
history of split sequence should be traced and onty one
variable is needed to be recorded in linear spiral hashing
(i.e., first or c), instead of a -table of indexes in [24] or a
sequence of split points in {7]. Furthermore, linear spiral
hashing has a systematic way in handling file contraction.

Since high storage utilization and fast data retrieval atre
always a trade-off in all dynamic hashing schemes, we look
for a compromise between high storage utilization and fast
data retrieval. Our simulation results show that, if we care
about fast retrieval (and a low average insertion cost) more
than high storage utilization, we choose a k with a large value
in linear spiral hashing. Therefore, linear spiral hashing
provides a flexible choice between these two requirements,
Since there are many factors which a file structure designer
cares about, including fast data retrieval, a low average
insertion cost, high storage utilization, and stable perfor-
mance through file expansions, our appreach provides the
designers a useful and flexible formula to reach their goals.
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