
lEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11. NO. 6, NOVEMBERIDECEMBER 1999 969

Linear Spiral Hashing for Expansible Files
Ye-In Chang, Member, /E€€, Chien-I. Lee, and Wann-Bay ChangLiaw

Abstract-The goal of dynamic hashing is to design a function and a file Structure that allow the address space allocated to the file to
be increased and reduced without reorganizing the whole file. In this paper, we propose a new scheme lor dynamic hashing in which
the growth of a file occurs at a rate of per full expansion, where n is the number of pages of the file and L i s a given integer constant
which is smaller than n, as compared to a rate of two in linear hashing. Like linear hashing, the proposed scheme (called linear spiral
hashing) requires no index: however, the proposed scheme may or may not add one more physical page, instead of always adding one
more page in linear hashing, when a split occurs. Therefore, linear spiral hashing can maintain a more stable performance through the
file expansions and have much better storage utilization than linear hashing. From our performance analysis, linear spiral hashing can
achieve nearly 97 percent storage utilization as compared to 78 percent storage utilization by using linear hashing, which is also
verified by a simulation study.

Index Terms-Access methods, dynamic storage allocation, file organization, file system management, hashing.

+
1 INTRODUCTION

HE goal of dynamic hashing is to design a function and a T filc structure that can adapt in response to large,
unpredictable changes in the number and distribution of
keys while maintaining fast retrieval time [3], for example,
for a Web-based database [17]. That is, the address space
allocated to a file can be increased and reduced without
rcorgaiiizing the wholc file. (Note that the retrieval time
based on the hashing approach is O(1) as compared to
O(log n) in a B-tree approach, where n is the file size.) Over
the past decade, many dynamic hashing schemes have been
proposed. These dynamic hashing schemes can be divided
into two classes: one nceds an index, the other one does not
need an index. Extendible hashing [l], [61, [19], [221, (261
and dynamic hashing [9], (291, [30] belong to the first class.
Linear hashing [41, [51, (101, [I l l , [U], [141, 1151, 1161, [lS],
[ZO], [23], [27], [28] and spiral storage [21, [71, 181, [21], [241,
[25] belong to the second class.

Among these dynamic hashing schemes, linear hashing
dispenses with the use of an index at the cost of requiring
overflow pages. The first linear hashing scheme was
proposed by Litwin [la]. In linear hashing, a file is
expanded by adding a new page at the end of the file
when a split occurs, and relocating a number of records to
the new page by using a new hashing function. The new
hashing function doubles the size of the address space
created by the old hashing function. Therefore, after a
frrU expansion (defined in Section 2), the number of pages
is doubled. By having two hashing functions active at a
time, a file can be expanded without reorganizing the
whole records.

~ ~~ ~~

Y.-I. Cknng and W:R. ChaiigLinru are with tlic Depnrtnienf of Applied
Mathematics, Naliuniil S u n Yut-Sei1 University, Kuoiisiung, Taiwan,
Republic of China. E-mail: c l i o n g ~ i ~ m a t k . n s ~ ~ s ~ ~ . ~ d ~ . t w .
C.-I Lee is with the Institute of Information Educntiun, Nationnl Tninnn
Tenckcrs Collqe, Tninon, Tuiwnn, Republic of China.
E~tnni i : iccci8i~x.ntrrtc.L~.tw.

Mnnuscript received 11 Nov. 1996; revised 9 Non. 1998.
For iiformntiun on ahtaiiiing rrpriiits of lhis article, please send e-innil to:
tkiiL.Oaimpiirrr.urg, mid rcf?rence IEEECS Log Number 1117444.

Since in linear hashing, all the records on the split page
will be redistributed among this page and a new added
page at the end of thc file, the storage utilization of this page
will suddcnly drop to only half of thc original storage
utilization. Moreover, this phenomenon will cause that thc
performance in the access time and the storage utilization
oscillates after an expansion. To maintain a stablc perfor-
mance through the file expansions, many strategies have
been proposed [lo], [U], [15], [27]. Among these strategies,
linear hashing with partial expansions as first presented by
Larson [lo], [I21 is a generalization of Litwin's linear
hashing [18]. This method splits a number of buddy pagcs
together at one time and thc data records in each of those
buddy pages are redistributed into the related old pages
and the new added page (called a partial expansion). That
is, the doubling of the file (i.e., a full expansion) is carried
out by a series of partial expansions. In [27], they have
proposed another way to perform partial expansions, in
which data records in all of the buddy pages are
redistributed into those old pages and the new added
page.' Larson also has presented another strategy to
maintain a stable performance through the file expansions
by changing thc expansion sequence [I5].

Martin's spiral storage [21], [25] is a different approach
to dynamic hashing without using an index, in which thc
logical address space of a file can be visualized as
shrinking on the left and growing on the right. That is,
when a file is expanded, records in a pipe on the left are
moved to a new larger space on the right in terms of the
logical address space. Moreover, a logical to physical
address mapping strategy is employed to rcuse space
frced on the left for physical irnplemcntation. Unified
hashing [24], modified unified hashing 171, and cascading
hashing [8] are also proposed based on the similar idea of
Martin's spiral storage.

In this paper, we propose a new scheme for dynamic
hashing in which the growth of a file occurs at a rate nf
per full expansion, where n is the number of pages of the
file and k is a given integer constant which is smaller than n,
as compared to a rate of two in linear hashing. Like linear

1041-43471991$1000 0 1009 IEEE

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on August 12,2021 at 03:05:48 UTC from IEEE Xplore. Restrictions apply.

970 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 11, NO. 6, NOVEMBERIDECEMBER 1999

hashing, the proposed scheme (called linear spiral hashing)
requires no index; however, the proposed schcme may or
may not add one more physical page, instead of always
adding one more page in linear hashing, when a split
occurs. Therefore, linear spiral hashing can maintain a more
stable performance through the file expansions and have
better storage utilization than linear hashing. The basic idea
of linear spiral hashing is similar to Martin's spiral storage.
However, while Martin uses an exponential spiral, our
scheme uses a linear spiral. Based on an exponential spiral,
the expected density of records on the left end of the file
will bc the highest one and is decreasing from the left to the
right of the file; i.e., the load distribution of the pages is not
uniform all the time [21]. As compared to the exponential
spiral approach, our linear spiral scheme not only reduces
the address calculation cost, but also can provide a much
uniform load distribution due to the linear function. To
reduce the number of disk accesses for overflow records,
linear spiral hashing applies separators [13], which makes
use of a small in-core table to direct search so that the
records in the overflow pages can be retrieved in one disk
access. Therefore, the retrieval of m y record in linear spiral
hashing is guaranteed to be in at most two disk accesses.
From our performance analysis, linear spiral hashing can
achieve nearly 97 percent storage utilization as compared to
78 percent storage utilization by using linear hashing,
which is also verified by a simulation study.

The rest of the paper is organized as follows. Section 2
describes the basic idea of linear spiral hashing. Section 3
gives a formal description of linear spiral hashing. Section 4
presents the performance analysis for linear spiral hashing.
Section 5 discusses the Simulation results of linear spiral
hashing, and compares it with linear hashing [18] and linear
hashing with partial expansions [lo]. Finally, Section 6
contains a conclusion.

2 BASIC IDEA
In this section, we describe the basic idea of linear spiral
hashing. First, WE briefly describe Martin's spiral storage
[21], [25]. For convenience, we describe the case of k = 1. In a
dynamic hashing scheme without using an index, the data
records are stored in chains of pages linked together. A
chain split occurs under a certain condition, for cxample,
whenever the number of records exceeds a positive integer
value. Based on the spiral storage approach, given a data
record with a key Key, the logical address can be derived by
the following steps:

Key - > m(Key) - > X

> Logicallnddrcss(~1cnot~~ as Y) ,

where m(Iie?/) is a hash function which distributes the
records uniformly on the interval [0, 1). The value of X is
derived from the function: X = rc - m(Key)l + m(Key),
wherc the parameter c is fixed by the file size. c increases as
the file size increases. The range of X is always one unit
from c to (c t 1) (i e , X t [e, c + 1)). During file growth or
contraction, the variable c is incrementally readjusted. The
function X may be seen graphically in Fig. 1. Note that as

I

I " I I I I " ' ' b

n<K)
0.1 11.2 0.3 0 4 0.S 11.6 0.7 i1.X (I.<> 1

Fig. 1. The X function.

Y
6

5

4

3

1 :
0

X
0 I 2 3 4

c -
e' -

Fig. 2. The growth function
approach.

the value of c changes, the interval of X values stays, but the
starting and ending values are c and (c + l), respectively. A
logical address Y is [U], where y = f (X) . As can be seen in
Fig. 2, where y = f (X) = ZX, the growth function f permits
the range of X to grow as the value of the parameter c
increases. The effect of the function is therefore to increase
the logical space dynamically.

While in our proposed linear spiral hashing, given k = 1
and the number of initial pages so = 2, the growth function
can be viewed as show in Fig. 3 based on the given growth
rate 5, where n is the size of the current file. Based on this
figure, we can derive the related growth functions ?/ = , f (X) ,
as shown in Fig. 4, and their related inverse functions

Let a split pointerfirst point to the next logical page to
be split (i.e., first is the logical page number of the first
page in the current file), and initially, split pointer first
points to page 0. When a file is split, the value of c is
readjusted to eliminate the first page by the following way:
CI = f-'(first + 1). All records in the old first page (left)

= f (X) = Zx used in the spiral storage

X = f-'(y).

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on August 12,2021 at 03:05:48 UTC from IEEE Xplore. Restrictions apply.

CHANG ET AL.: LINEAR SPIRAL HASHING FOR EXPANSIBLE FILES 971

Fig. 3. The growth function

are remapped into a new larger space on the right. Thus,
both file boundaries move. Table 1 shows the relationship
between the growth of the logical address space Y, where
Y = iy], and thc size of the current file n. Since many
computer systems would have difficulty with a file where
both boundaries move, a logical to physical address
mapping is employed to reuse space freed on the left.
In our approach, we always rcuse the freed physical page
for the last new added logical pige as shown in Table 2,
where I' is the physical address, n is the current file size
and the cross-point of table row n and column P
represents the corresponding logical address Y . (Note that
thc physical address P can be derived from the logical
address Y by calling the function physicrd as described in
Subsection 3.1 later.)

In linear spiral hashing, a full expansion occurs when
c = f - ' (f i r s t) is an integer. (Note that a full expansion
occurs when a split occurs at a page next to which is a new
added page. In linear spiral hashing, initially, fimt = O and
c = f- '(fir,st) = 0, and the range of X of the current file is

= f (X) when so = ' 2 and k 1.

[0, 1); thereforc, when the range of X of the current file is
changed to [I, 2), a full expansion occurs. That is, when
c = ,f-'(fir.t) is an integer, a full expansion occurs.) A level
(denoted as d) is defined as the number of full expansions
happened so far and d = 1.l. On each level d, the pages are
split in the order from the small number to the largc
number of pages. After all the pages on the current level d
have been split, i.e., after a full expansion, the value of level
(1 is increased by 1. For each level d, y,,, or yd+l is used to
locate a page depending on the current value of c, where y,,
is the growth function uscd in level d. (Note that if
m(Key) < (c ~ d), i.e., the page where data record with
kcy = Key is stored has been split, then yd+, is applied;
otherwise, g,i is used.) Moreover, there are at most (SO +
(d + 1) k) pages on level 11, where so is the initial file size and
k is the new added page number per full expansion.

In general, when an insertion causes a splitting, the data
records in pagefirst will be redistributed to pages lnst and
(last + I), or pages (lnst -i- 1) and (last + Z), according to the
value of m(Key), where lust is the logical page number of
the last page in the current file is equal to ([y&'(fimL) +
I)] - I) (described in Section 4). Since linear spiral hashing
only adds k more page after a full expansion and k < so (i.e.,
the growth rate is *, which is smaller than Z), this scheme
can maintain a more stable performance through the file
expansions and provide better storage utilization than
linear hashing.

3 THE ALGORITHMS
In this section, given an integer constant k, we give a formal
description of the address computation algorithm for linear
spiral hashing. We also describe retrieval, insertion, file
split, deletion and file contraction algorithms used in linear
spiral hashing. In these algorithms, the following variables
are used globally:

1. b: the size of a home page in number of records;
2. U): the size of an overflow page in number of records;
3. ,firnt: the split pointer and the initial value = 0;
4. rl: the level, i.e., the number of finished full

expansions and the initial value = 0.

3.1 Address Computation
Let SO be the number of pages of the file initially, k be the
number of new added page per full expansion (k < ,so), and

Fig. 4. The (a) growth functions and (b) inverse growth functions, when so = 2 and k = 1.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on August 12,2021 at 03:05:48 UTC from IEEE Xplore. Restrictions apply.

972 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO, 6. NOVEMBEWDECEMBER 1999

TABLE 1
Existing Logical Page Numbers Y When so = 2 and k. = I

Y

1 be the level number. Then the relationship between

growth function yl for each level 1 and variables .so, k, and X

can be computed in the following way by observing the

relationship shown in Fig. 3:

= s o x
?/I = (so + k) X - k;
?/z = (so + 2k)X ~ k (l + 2);
y3 = (8(1 + 3k)X ~ k (l + 2 + 3);
?/i = (S ,I + 1k)X - k g = , i;
?/i = (so + 1k)X ~ k1Y.
Let 1 = re - m(Keg)1 and X be 1 + m(Keg), then yl can

be rewritten as follows:

TABLE 2
Placement of Logical Pages When SO = 2 and k = 1

Since the value of may not be an integer, we let Yi =

bIj be the logical address. Moreover, the relationship
between yl and 511-1 can be derived as follows:

yi = yi-1 + k l + .so - k + k m (K e y)

To compute the final home page number (i.e., the
physical address) after d full expansions, function
home-address is defined as follows:

function home-address(Key) : integer;
var

1, Y : integer;
c, X : real;

c = yi'(first);
1 = [c ~ m(Key)l;
X = 1 + m,(Key);
y = l?/i(x)l;
home-address = physicsl(Y, 1);

begin

end;

In this function, we have to decide whether yc(or is
to be used (i.e., 1 = d or 1 = d + 1). Therefore, we must
derive the current value of c first by the reverse growth
function ?/a1 based on the current value offivst and d. Then,
we let X be [c ~ rn(Ke?/)l + ni(Key) and the logical address
Y be b i (X)] . (Note that if m(Key) < (c - d), i.e., the page
where data record with kcy = Key is stored has been split,
then 1 = d + 1; otherwise, 1 = d.) Finally, we call the
following function physical(Y, 1) to reuse space freed on
the left as explained before:

function physical(Y, 1) : integer;
var

low, high : real;
anclow, anc-high : integer;

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on August 12,2021 at 03:05:48 UTC from IEEE Xplore. Restrictions apply.

CHANG ET AL.: LINEAR SPIRAL HASHING FOR EXPANSIBLE FILES 973

keys which will bc remapped into pagc Y lies at boundaries
one below frnm (lozo I) to (h i g h 1). This is because the
active keyspace range is always one unit loug from c to
(c + 1). One can map from X back to the page ancestor
addresses by the following computation:

1owesi.nnceslor = !/I-, (low
Iri,9hrsl~niiceg%or = 711- j (high,

The actual lowcr pagc is nncioui = ~lowcst.aiaccslor],
and the higher page is unc./iigh = ~Aighcsl~a7iccstorJ. The
ancestor range mapping to a pTge is always smaller than
onc unit page. This is true since a deallocated logical page is
always mapped to a ncw largcr spacc. When a page is
totally deallocated, that space can be immediately reuse. We
need to determine whether the low ancestor address and
high aucestor address are within the same page. Since pagcs
always expand to a larger space,

I), awl
1).

high-I high

Fig. 5. Physical address mapping

begin
if Y 5 an - 1 then

clse
begin

physical = Y

low = y j l (Y) ;

nrlc-lolv = Lyl ,(low - l)] ;
high = yI ' (Y+ I):

audiigh = Lg- ,(high - I)];
if anc-low < nnc.lrigh Lhen;

elsc physical = Y mc-low;
physical = pliysicd(anc-low, 1 - I)

end;
end:

In this function physicnl(Y, 1) , given a logical page Y and
a current level I , it determincs the related physical addrcss
1251. This requircs a determination of how the given logical
address was instantiated. There arc three possible cases:

I .
2.
3.

It was one of the original allocation.
It was a reuse of a freed pagc on the left.
It was a newly allocated page.

lou~esb~ance,sbor - Iii~/irest~ii,n,centor < 1.

Thus, if nnc./aiq/i. > anc.low, then page Y was instantiated
from the recycled page anc-low. Otherwise, page Y was
instantiated from newly allocated spice.

If page Y was instantiated with a newly allocated page,
one needs to know the number uf active locations whcn it
was instantiated. This is given by (Y nnc-lov~), since Y
was then thc last page and mcAm was the initial page at
that timc. If the page was instantiated from a recycled pagc,
the problcm reduccs to find how this recycled page was
instantiated. The address is always reduced and the
recursion completes.

The above recursive function can be rewritten in the
following way without rccnrsion:

function physical(Y, 1) : integer;
var

z, anc-low, an-high : integer;
low, high : real;

ancclow = Y;
repeat

begin

z = ant-low;
i f z 5 SII

else
begin

1 thcu
physical = z

low = ? / j ! (A) ;

high = ?I;'(. -I. 1);
auclow =L?/i-, (luw 1)J:
nuc-high =bl .I (liigli - I)] ; If Y < (so l), its physical address is Y. If the page was put

into newly allocated space, its physical address is the
number of pages existent just before its creation. If the page
was put into recycled spacc, one determines its recycled
ancestor and then recurs to find the first allocation for the

cnd;
until(ancc1ow 2 ancchigh);
physical = z ancclow;

end;

ancestor page. This process involves finding 'the fractional 3.2 Overflow Handling and Retrieval
page addresses, called the ancestor range, which when In [E], Larsou applied ,scpar'o,lors 1131 for home pages to
deallocated could map keys to the logical pagc under linear hashing to guarantee that any data record can be
consideration. Pig. 5 shows this process graphically. retrieved in one disk acccss, whcre overflow records are
Consider page Y . The rangc of keys mapping to pagc V is distributed among the home pages. This method,
from the lower boundary at low up to high. The range of srparutor,~, is based on hashing and makes usc of a small

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on August 12,2021 at 03:05:48 UTC from IEEE Xplore. Restrictions apply.

974 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO, E, NOVEMBERIDECEMBER 1999

in-core table, for each home page if needed, to direct the
search. To understand what a separator is, let's define a
probe sequence first [15]. Assume that all of the data
records are stored in an external file consisting of n
pages, and each of those TL pages has a capacity of 6
records. For each data record with kcy = Key, its probe
sequence, ZJ(K~:Y) = (m(Kw),pa(lfey), . . . ,p7&(1ie~/)) , (71 2 11,
defines the order in which the pages will be checked
when inserting or retrieving the record; that is, every
probe scqurnce is a permutation of the set {1,2, ..., n}. For
each data record with kcy = Key, its signature sequence,
.s(Ke?/) = (s l (l i ey) , .~a (I (r? /) , ..., s,,(Key)j, is a q - bit inte-
ger. (Note that 2 I and q should be large enough such that
signatures of all data records can be in {0, (2" ~ 2)} [13],
[15].) When a data record with kcy = Key probes page
p,(licy), the si,qn,n%nrc .s&(liey) is used, 15 i 5 7~. Imple-
mentation of p(Key) and s (I i r g) are discussed in detail in
[13]. Consider a home page j to which r , r > h, records
hash. In this casc, at least (r ~ h) records must be moved out
to their next pages in their probe sequences, respectively.
Only at most 6 records are stored on their current signatures,
and records with low signatures are stored on the pige
whereas records with high signatures are moved out. A
signature value which uniquely separates the two groups is
called a separator, and is stored in a separator table. The value
stored is the lowest signafure occurring among those records
which must be moved out. (Note that a separator table has
two entries: one is a separator value and the other one is a
pointer to a page. And, the initial values of separators are
strictly greater than all signature values. For example, using
q bits as described before, the initial values of separators are
set to (2q ~ I), meaning that their corresponding pages are
empty, initially [13], [15].)

Since, in [15], overflow records are distributed among
the home pages, the costs of file-split, insertion, and
maintaining separntors will be expensive. To avoid this
disadvantage and efficiently search a data record stored
in overflow pages, linear spiral hashing also applies
separators but only for overflow pages. To apply separators
to handle overflow pages in linear spiral hashing, we
need the following modification. Assume that for each
home pige i, its ovcrflow records are stored in an
external file consisting of in pages, and that each of these
~n pages has a capacity of 'U records. For each overflow
record of home page i with kcy = Key, let its probe
sequence be pi(lic?lj = (p i ~ (K r y) , ~ I ; ~ (K P ? /) , ..., ptnL(lfey)) =
(1,2,,. . ,m,), n i 2 1. (Note that to increase storage utiliza-
tion, we will probe overflow page j only when overflow
pages I , 2, ..., (j ~ 1) are full.) For each overflow record of
home page i with kcy = Key, let its signature sequence be
si(Key) = (, s i l (I < e ~) , s,n(Key), ..., s tvn(Kc~)) . When an over-
flow record of home page i with key = Key probes page
1 ~ ~ ~ (K e y) , the nipatirrr sij(Key) is used, 1 < ,j < 7n. More-
over, when the external file for the overflow records of a
home page is full, first, we have to add a page at the end of
the external file. Next, all the probe sequences and signature
sequences of the data records on this home page and its
overflow pages have to be extended and recomputed to
include this new added page. That is, the number of
overflow pages for a home page, m, will be changed,

depending on the number of overflow data records of a
home page [15]. By using separatovs and the above
modification, any data record can be found in at most two
disk accesses.

As a file grows, the total size of separator tables of all the
home pages (which have overflow pages) can be too large to
be loaded into main memory at the same time. Moreover, to
reduce the number of disk accesses for loading a separator
table for a certain home page which has overflow pages, we
store a separator table in each home pa~ge. A separator table is
loaded into main memory whenever its related home page
is read into main memory, and it is written back to the disk
whenever its home page is written back to the disk. In the
case that there is no change for the data records in the home
page but a data insertion/deletion has caused data record
movements between overflow pages, the related home pige
still should be written back to the disk before it is removed
from main memory. That is, one more disk access is needed
in this case, since the contents of the separator table has been
changed. Therefore, we still can guarantee that the cost of
data retrieval is at most two disk accesses. As shown in
Fig. 6 , the function retrieval(kcy) is used to locate the actual
physical address (either in a home page or one of its related
overflow pages), whcrc seporatorii, I 5 .j 5 in, represents
the separator for the jth overflow pige of home page i .

In this function, home pige i is searched first, which is
one disk access. If the data record cannot be found in home
page i, its overflow pages are tried by using separators. If the
data record exists in those overflow pages, one more disk
access is needed; otherwise, 0 /1 more disk access is needed.
Therefore, at most two disk accesses are needed.

3.3 Insertion and File Split
When a data record is inserted, its home pige is searched
first. If the size of its home page has exceeded the page
size 6, then one of its related overflow pages is searched
according to its probe sequences. In the case that a data record
insertion causes relocations of some other records in
overflow pages, related separators which are stored in the
home pige may also have to be updated. Moreover, when
the external file for the overflow records of a home pipe is
full, we add a page at the end of the external file and all the
probe sequences and signature sequences of the data records on
this home page and its overflow pages have to be extended
and recomputed to include this new added page. In this
case, one more disk access is needed to write the home p?ge
back to the disk, since the separntor table is included in the
home pige.

Whenever the number of inserted data records exceeds
a predetermined split control condition, a split occurs. In
this case, data records in page first (including its
overflow pages) have to be redistributed to pages last
and (last + I) , or pages (/asl+ 1) and (last -1- 2), depend-
ing on the value of m (I i q) , where last is the logical pige
number of the last page in the current file. Tlicn, first is
increased by one and new level d is computed. The
results of the above actions are equal to update first (arid
d) first and then reinsert those data records which are in
the page where the old first points to by using the new
hashing function y,j+,. Next, we show how to derive the
current level l given the value of y. Since the growth rate

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on August 12,2021 at 03:05:48 UTC from IEEE Xplore. Restrictions apply.

CHANG ET AL.: LINEAR SPIRAL HASHING FOR EXPANSIBLE FILES 975

~ ~~~~~~ ~~

function retrieval(key) : pointer;

begin
var i. j : integcr;

i = tr(iineaddress(kcy)~
if data record iti found in page i then return(physical.address(i));
/* function physicaladdress returns the actual yllynical address of home page i */
clsc
begin

for each entry j in the separator table i do
begin

ifs;j(key) i separatorijT.value then
begin

if data record is found in page pointed by separaLorijf.pointer
then return (separatorij T.pointer)
else return (nil)i

end:
cnd;
return (nil); /* nil denotes that the record is not found */

end;
end;

~~~ ~ 

Fig. 6 .  Function retrieval. 

of the file is always !I~$k, when n is the size of the current 
file, the following formula shows how y is bounded after 
(1 - 1)  full expansions: 

,so i- (so + k j  + ... + (gci + (1 - I j k j  5 U 
< SO + (so -t k j  + ,.. + (so + l k ) ;  

so + (SU + k j  + ... + (.SO + ( 1  - I j k j  5 ?/. 

Therefore, given a value :q, 1 can be computed as follows: 

k12 + (2s" - kjl - 2?/ 5 U; 

( k  ~ 2s") + JW, 
2k 15 

( k  ~ 2 s o j  + \/(2so - kj' + X ~ Y /  

2k 

The description of procedurefile-split is shown in Fig. 7. 
(Note that to reduce the number of disk accesses, we use a 
buffer mechanism to reduce the overhead of reinsertion. 
That is, we first perform the reinsertion in a buffer. Then, 
we write one pige back to disk from the buffer at a time, 
instead of reinserting one data record back to disk at a time 
in the process of reinsertion.) 

3.4 Deletion and File Contraction 
When a data record is deleted, we immediately try to move 
another data record to fill the hole left by the deleted data 
record. There are two cases. First, if the deleted data record 
is st0n.d in a home page which has overflow pages, we only 
move one of the data records stored in the last overflow 
page (i.e., overflow pige nL) back to the home page and fill 
the hole, by the way, the sepaualous must be updated. 

Second, if the deleted data record is stored in the overflow 
page i ( l  5 i 5 vi), we should move one of the data records 
from overflow page (i + I)  back to fill the hole created by 
the deletion in overflow pige i .  In the same way, the hole 
created by the above movement in overflow page ( 7  + 1) 
will be filled by moving one of the data records in overflow 
page (7 + 2). This process will not be terminated until one of 
the data records in ovcrflow page vi is inoved back to 
overflow pige (m - 1 j. In this process, the related separafous 
must also be updated. 

Whenever the number of deleted data records exceeds a 
predetermined contracted control condition as in file split, a 
contraction occurs. In this case, we should collect the data 
records which have been redistributed in the last file split 
operation back to page (Sirst - I ) .  Since when a split occurs 
in page (f7r.d ~ I), the data records in page (Sirst - I)  
(including its overflow pages) have to be redistributed to 
pages (lost ~ 1) and Last, or (Last - 2), (Inst ~ 1) and l a s t ,  
depending on the value of 7rr(l<ey), where lasl is the logical 
page number of.the last page in the current file. Therefore, 
when a contraction occurs, we should collect those data 
records which were stored in page (,first - 1) before the last 
file split but nuw are stored in those pages mentioned 
above, and move those data records back to page 
(Sirst - 1). The results of the above actions are equal to 
update f irs t  (and d )  first and then reinsert all the data 
records'stored in those above pages. (Note that for those 
data records in pages lasi,, ( last  - I )  and ( l i ~ s l  -2 j ,  they 
may not be moved out from page ( f h t  ~ 1) and we do not 
record any information about the original page for each 
data record in a p~gc;  therefore, we have to compute the 
home address for each data record in those pages to 
determine its original page from which the data record was 
moved out.) The description of procedure f~le~conlr.artiori  
is shown in Fig. 8. 

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on August 12,2021 at 03:05:48 UTC from IEEE Xplore.  Restrictions apply. 



976 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11. NO. 6, NOVEMBERIDECEMBER 1999 

procedure filesplit(); 
var i: j : integer: 

B : buffer; 

read page first  and its overflow pages into buffer B: 
set page first and its overflow pages to empty; 

begin 

first = first + 1; 
= ,(n;-2.,)tJ(z..-r)ats*.,ipdl 

? k  1 ;  
for each record with key = Key in buffer B do 
begin 

i = horneaddress(Key): 
if home page i is not full th r r i  
write this record to home page i 
elSC 

begin 
find an  entry j in separator table i such that sij(Key) < separatorij1.value: 
if not found then /* the overflow pages are full */ 
begin 

append an overfiow page to the external file of home page i; 
recompute the probe sequences and signature sequences: 

end; 
find 0n entry j in separator table i such that sij(Key) < separatorij1,value do 
begin 

if the page pointed by separatorijf.pointer is full then 
move out the record whose key is separatarijf.value to Buffer B; 

write the data record with key = Key to the overflow page pointed 
by separatorij f.pointer: 
updated separator;jT.value if necessary; 

end; 
end: 

end; 
end; 

Fig. 7 .  Procedure file-split, 

4 PERFORMANCE ANALYSIS 
In all dynamic hashing schemes without using an index, a 
split occurs under a certain condition. There are two kinds 
of strategies [3], [IS]: uncontrolled and controlled splitting. 
Thc uncontrolled splitting means that a split occurs 
whenever a collision occurs. In the controlled splitting, a 
split occurs when the number of inserted data records 
exceeds a load control (L) ,  or when storage utilization 
exceeds a load factor (A),  0 < A < I.. (Note that a load 
control denotes the upper bound of the number of new 
inserted records before the next split can occur, and a load 
factor is a storage utilization threshold.) In general, the 
controlled strategy can provide better storage utilization 
than the uncontrolled strategy, which is verified in [la]. 
Moreover, when the load factor is used as the split control 
strategy, the system will suffer more unstable performance 
during a full expansion as stated in [lo], [27]. Therefore, we 
prcfcr to use the load control as the split control strategy as 
that in [27], [28]. 

In this section, we present the performance analysis of 
linear spiral hashing by using the load control strategy. In 

this performance analysis model, we assume that the keys 
for data records are uniformly distributed and independent 
to each other, and the page size is measured in number of 
record slots. The hash function which distributes the 
records uniformly on the interval [O, I). The size of a home 
page is denoted by 0 and the size of an overflow page is 
denoted by W. The overhead for updating separator tables for 
home pages is ignored. We also assume that the number of 
overflow pages for each home pages is minimum. In other 
words, if a home page has 1, t 2 0, overflow records then 
there will be overflow pages for this home page. When 
the search cost is computed, all records are assumed to have 
the same probability of retrieval. 

Let .so be the number of pages of a file initially and N 
be the number of data records inserted into the file. 
Given N, we are able to derive information about the 
current state of the file, such as the number of used home 
pages, first, the average retrieval cost and the storage 
utilization, that is, to analyze these properties of a file as a 
function of N. The various properties that we are interested 
are discussed as follows. 

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on August 12,2021 at 03:05:48 UTC from IEEE Xplore.  Restrictions apply. 



CHANG ET AL.: LINEAR SPIRAL HASHING FOR EXPANSIBLE FILES 977 

procedure file.curriraction(): 
VBP i. j : integer; 

R : b u f m  
lregin 
' read pagcs lost and (lost-I) and (last-2) aird lheir overflow pages intn buffer 8; 

set pages last and ( I m t - I )  and (lost-2) and their overflow p a p  tu empty; 
first = first - 1; 

d = j -  1 x  I; ( ~ - z ~ . ) + J 1 2 . 0 - r ) ~ + s t ~ l , ~ . l  

for each record with key = Key in buffer R do 
begirt 

i = Iiorricjlddress(Key): 
if holm page i i s  not full then 

CIW 

write this record to home page i 

begin 
find an entry j in separator table i such that sjj(Key) < separatorij [.valse: 
if nul lLiiiid then 1' the overlloa pages are full '1 
begin 

e"d; 
find an entry j i n  srporalur lable i such that sij(Kry) c separator(jf,value do 
begin 

append an ovcrflnw pngr to the  CYICI~RI file of home page i; 
recompute the probe sequences and Signature sequences: 

if the page pointed by separalori,T.pointer is full then 

write the data record with key = Kcy to thc overflow page painted 
by separator,, I.pointcr; 
updated separatorjj f.value if necesrary: 

move out lhe record whose key i~ aeparatarijf.value to Buffer B; 

end: 
end: 

end: 
end; 

~ ~ ~ ~ ~ _ _ _ _  ~ ~~ _ __~  

c = l / r ' ( f i r . ,st) ;  

1' = 1 + 1; 

The number of splits performed is given by 

ns (N)  = 0, o 5 N r,) 

(Notc that to reduce the number of splits, we assume 
that the split control is started whcn the first pages are 
filled with sII * L records in the performance analysis.) In 
linear spiral hashing, the value of first is equal to the 
number of splits, i.e., f irs t  = ns(N). Since, in linear spiral 
hashing, the growth rate of a file is y, the number of level 
can be computed by thc following formula as derived in 
Section 3.3, given Y = f irs / ,  = ns(N) : 

Since the range of X for thc current file is always 
between c and (c-t I) , and g~(c) = ,Jirsl = ns(N), based on 
the current value of first, we can derive the value of last, 
which the last logical page of the current file, by the 
following way: 

lest = [gp(c + I)] ~ 1 

Consequently, thc number of pages of the current file is 

The probability Pv( f im l ,  i )  of load distributions for 
logical pages i, given the value of first, are different in 
linear spiral hashing as shown in Table 3. In general, after a 
full expansion, i.e., after level 1 is increased by one (or when 
y- ' ( f ir .s t )  is an integer), the probability Pr(firs%,i) is the 
same in each page i of the current.file, and is equal to & , 
firs% 5 i 5 lmt; that is, the data records are uniformly 
distributed in the file. During the process of a full 
expansion, let median be yp(l'),  where I' = l + I, then the 
probability Pr(first, i )  can be divided into the following 
three classes: 

(lest ~ f i r s l +  I). 

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on August 12,2021 at 03:05:48 UTC from IEEE Xplore.  Restrictions apply. 



978 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 6, NOVEMBERIDECEMBER 1999 

TABLE 3 
The Probability of Load Distribution 

- median - f i r ~ t  + 1 
S" + lk  Pr(first ,  i )  = 1 ~ 

last - median ~ 1 
sg + l'k 

- , a  = last. 

The pages betweenfirst and median are not split yet in the 
current level 1; therefore, the probability Pr(first ,  i) of each 
of those pages is still the same as the probability after 1 full 
expansions. The pages between ( m e d i m  + I)  and (last  - 1) 
are newly added during the process of the ( 1 +  1)'th 
full expansion; therefore, the probability of each of those 
pages is the same as the probability after (1 + I) full 
expansions. For page last, Pr(first ,  last)  is equal to the 
remaining valuc. 

After computing the probability Pr(f irs t ,  i) for each 
page 1 of the current file, we can start to analyze the other 
performance measures. Let W(1) be a function to denote the 
number of overflow pages of a home page with t data 
records inscrted and be defined as follows: 

Note that, since we store the separator table in the home 
page, the used space SU for the separator table is 

data rccords, where the size of a data record is .9d times of 
the size of a separator entry (including the separator value 
and the pointer). Let Bin(t; N,P)  denote the binomial 
distribution, i.e., IJin(t; N ,  P) = (CPP'(1 ~ P)N-'). The prob- 
ability for logical page i ( f i r s t  5 i 5 last) containing t data 

records is Rin(t; N ,  Pr(,first,i)). The expected number of 

overflow pages for logical page i is obtained as: 

OP,(N) = C ( ~ ( t ) ~ ~ i n ( t ;  N ,  ~ r ( f i ~ s t ,  i ) ) ) .  
i=n 

Then, the average number of overflow pagcs for the file 

after inserting Ai data records is given by: 

and the storage utilization can be obtained as follows: 

N 
(last - first + 1)(b + wOP(N))' U T I ( N )  = 

By using separators for handling overflow records, the 

expected cost of an unsuccessful search for home page 

i ( f i r s l  5 i 5 last) in terms of the numbcr of disk accesses is: 

us, = 1, 

MSi = 2, 

oq = 0, 

or, > 0. 

Then, the average number of disk accesses for an 

unsuccessful search is given by: 

Ills1 

u s p )  = ( r ~ s ~ ( N ) ~ r ( f i r s ~ , i ) ) .  
i= /,vat 

For the successful search, we first consider the expected 

number of disk accesses for retrieving all the data records in 

home page i( f irst  5 i 5 last)  plus its overflow pages, 

which can be obtained by: 

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on August 12,2021 at 03:05:48 UTC from IEEE Xplore.  Restrictions apply. 



CHANG ET AL.: LINEAR SPIRAL HASHING FOR EXPANSIBLE FILES 979 

are stored in home page i, the total number of read/write 
operations for inserting a record after these 6 records in 
home page i is 2h( l  + Ol<(/,)). In the same way, when a 
record in inserted into overflow page 1, onc record in 
overflow pige 1 has to be moved out to overflow page 2, 
aiid so on. The number of ovcrflow pagcs which have to be 
updated is OP;(t). Moreover, since the separator table 
which is stored in home pige i has been changed, onc more 
page (i.e., home pagc i )  has to be updated. Therefore, the 
total number of read/writc opcrations for inserting a record 
after these 111 records in ovcrflow pagc 1 is Zw( 1 + OP,(L)). 

In general, for inseTting a Tccord in overflow pige 
k:(l 5 k < OI;( t ) ) ,  thc total number of read/write opcra- 
tions is ~ I I J ( ~  + (Os(/,) ~ k + I)). The reason is that the 
overflow pagcs that have to be updated are overflow pages 
k : , ( k +  1 ) ,  ..., OT;(L)). Therefore, the number of thesc up- 
dated pages is (OI:(t) ~ I; + 1). Since the separator table in 
home pagc i has been changed, home pige i also has to be 
updated. Finally, in the last case (case (I + Ol:( t ) ) ,  fur 
inserting a rccord into the last overflow page OI:(t), the 
total number of read/write operations for these rccords 
q(q 5 111) which are stored in ovcrflow page OP,(1) is 
Zq(1 + 1). For simplification, wc let q be the average valuc :. 

Then, the average number of disk accesses for inserting a 
data record in any page i among thosc ( s / i -  I )  pages is 
givcn by: 

N 

+ ( ( t  + (t ~ D))Bin(t,N, T + ( f i y , s t , i ) ) )  
f = h ,  I 

Then, the average number of disk accesses for a 
successful search can bc calculated by: 

For the average insertion cost, we first consider the split 
cost at the insertion of the Ith ( t  5 N) data record, which is 
given by: 

SC(t)= 1 +OP(1) - t -2 (1+OP( t+ I ) ) .  

(Note that, since we apply a buffer mechanism, ( I  + OP( t ) )  
disk accesses arc need to read thc split page and its 
overflow pages into the buffer, and 2 ( l  i-OP(1+ I)) disk 
accesses arc nceded to write the split results.) 

Sincc a split occurs only when 1 is (L, 2L, ..., 
ns(N)L(ns(N)L 5 N)), thc total split cost for N inserted 
data records can be obtained by: 

Then, we consider the average cost of inserting a data 
record when there are t data records which have been 
inserted. (Note that given the numbcr of data records t, we 
can obtain the corresponding split pointer s p /  and the 
number of full cxpansion S I  as explaincd before.) Since a 
data insertion may cause the other data rccords to be 
reinserted, the average number of disk accesses for inscrting 
the (t + 1)th data record in page i is as follows: 

AC<(t) = 

Note that there are O/'i(t) overflow pagcs of home page 
I, and each of overflow pages has w rccords, expect thc last 
overflow page. We assume that the number of rccords in 
the last overflow page is 0.5711 on the average. Conscquently, 
the total number of records which arc s h e d  in home page i, 
and its overflow pagcs is ( h  + w(OP~(1) - I)  + 0.510). When 
a record is inserted into the file and the home address nf 
this rccord is page i, there are ( l + O P b ( t ) )  possible 
positions in which the record is inserted. Let's consider 
the case in which a record v is inserted into home pagc i ,  
which causes another rccord 2, iu home pagc i to be moved 
out to overflow pige 1. Then, one record which has bcen 
stored in overflow pige 1 has to bc forced to muve out to 
overflow pige 2, and so on. For this case, the total number 
of pages which have to be updatcd for inserting a record in 
home page i is (1 + OPz(t)) ,  i.c., the number of rcad/write 

AC(I) = 7 = 0  P(.sp/ , i ,  .s/)AC,,(t). 

Finally, we can obtain the average insertion cost in the 
insertion process of N data records (including the split 
cost), which is givcn by: 

Table 4a shows the results dcrived from the above 
formulas, where k: = 1,,so = 2, N = IO", 6 = 1 0 , 2 0 , 4 0 ,  
a ra l  80, I I I  L U,%, and L = 0.86, I ,  = 6, and I, = 1.2h in linear 
spiral hashing. Frum this table, wc observc that the storage 
utilization can be up to Y9 pcrccnt, whcre the cost of 
successful and unsuccessful search is in terms of the 
number of disk acccsscs. 

5 SIMULATION RESULTS 
In this section, we show the simulation results of linear 
spiral hashing, linear hashing [18] and linear hashing with 
partial expansions [lo], uiider two different split control 
strategies. In this simulation study [27], we assumc that N 
input data records are uniformly distributed. The environ- 
ment control variables are the size of a home page ( 6 )  aiid 
the size of an overflow pige (IO) and a load control (/,) 
which controls when a split should occur. In this simula- 
tion, the storage utilization aiid the average number of disk 
accesses for succcssful and unsucccssful searches arc the 
main performance measures considered. Moreuvcr, over- 
flow pages arc handled by .scpmtors  in all these 
approachcs. When the average succcssful/unsuccessful 
scarch cost is concerned, wc consider 2N search requests, 
where N searched data records are mesent in the file and operations is 2(1 + OP;(/,)). Sincc there are b records which 

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on August 12,2021 at 03:05:48 UTC from IEEE Xplore.  Restrictions apply. 



980 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11. NO. 6, NOVEMBERIDECEMBER 1999 

TABLE 4 
Pedormance: (a) Analysis Results; (b) Simulation Results 

Parametess 
b w L  

10 5 8 
10 5 10 
10 5 12 
20 10 16 
20 10 20 
20 IO 24 
40 20 32 
40 20 40 
40 20 48 
80 40 64 
80 40 80 
80 40 96 

~~~~~~~~~~~~.~ ...... ~ . . ~ ~  

_ _ _ _ _ ~ ~ ~ ~ ~ ~~~~.

Aiialysis Results
INS ss us titi

16.5 1.874 2.000 0.968
11.0 1.892 2.000 0.991
11.7 1.909 2.000 0.984
10.3 1.825 2.000 0.951
10.9 1.844 2.000 0.954

~~~~~~~~~~~~~~~~~~~~~~~~ ~ 

~~~~~~~~~~~~ 

I 1.3 1.8.52 2.000 0.957
6.1 1.7.55 2.000 0.917
7.1 1.114 2.000 0.9.55
7.7 1.793 2.000 0.956
4.6 1.650 2.000 0.892
5.1 1.672 2.000 0.895
5.6 1.119 2.000 0.911

~~~ ~~~~~~~~~~~ 

the other N searched data records are absent. When the 
average insertion cost is concerned, we consider the average 
result of 10 random differeut insertion sequences. 

Tablc 4b shows the simulation results of linear spiral 
hashing, where k = 1, .so = 2, N = loG,  UI  = 0.56, and I, = 
0.86, I, = 6, and L = 1.26, respectively. Compared with the 
analysis results shown in Table 4a, thc simulation results 
showu in Table 4b are very close to those shown in Table 4a. 

Simulation results of linear spiral hashing, linear hash- 
ing, linear hashing with two partial expansions per full 
expansion and linear hashing with three partial expansions 
per full expansion under the split control of the load control 
L are shown in Table 5a, Table 5b, Table 5c, and Table 5d, 
respectively, where k = I, SO = 2, N = lo', w = 0,56, and 
L = O.Xh ,  L = 6, and L = 1.26. From these tables, we 
observed that as the sizes of a home page and an overflow 
page are increased, storage utilization may he decreased in 
all these four methods. The reason is that the larger the size 
of a page is, the larger the average unused space in a home 
page or an overflow pige may be, which resulting in a 
decrease of storage utilization, Linear spiral hashing has the 
highest storage utilization among these four methods. 
When 6 = 20, 711 = 10, and L = 16, linear spiral hashing 
can achieve uearly 97 percent storage utilization, as 
compared to 78 percent storage utilization in linear hashing, 
and in lincar hashing with partial expansions under the 
same conditions. (Note that linear hashing with partial 
expansions was proposed to improve the retrieval perfor- 
mance of linear hashing since it can provide more stable 
performance oscillation than linear hashing during a full 
expainsion. However, based on the same reason, linear 

Paramctcrs 
b w L  

10 5 8 
10 5 10 
10 5 12 
20 10 16 
20 10 20 
20 IO 24 
40 20 32 
40 20 40 
40 20 48 
80 40 64 
80 40 80 
80 40 96 

~~~~~~~~~~~~~~~~~~~~~~ 

.... ~.~~~~

~~~~~~~~~~ ~ ~~~~~~ 

Simulation Results 
INS ss us uti 

16.2 I.X84 2.000 0.966 

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~ 

-

11.1 1.894 2.000 0.992
17.9 1.905 2.000 0.980
10.1 1.829 2.000 0.966
10.8 1.849 2.000 0.952
11.5 1.859 2.000 0.%6
6.7 1.759 2.000 0.911
1.2 1.179 2.000 0.961
7.8 1.199 2.000 0.952
4.7 1.652 2.000 0.892
5.1 1.679 2.000 0.892
5.5 1.719 2.000 0.909

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 

(b) 

INS : insertion cos1 

ss : succcssf'ul SCillCll ClISl 

us : Llnsuccessful seiwch cos1 

uti : storage utilization 

hashing with partial expansions will result in higher 
averagc insertion cost than linear hashing as stated in 
[lo], [12], [27], [28]. Moreover, linear hashing with partial 
expansions does not give any large help in improving 
storage utilization of linear hashing.) Under a fixed N ,  as L 
is increased from 8 to 96, the number of file splits is 
decreased, which results in a decrease of the average 
insertion cost in all these three methods. Moreover, the ratio 
of the average insertion cost of linear spiral hashing to that 
of linear hashing is decreased from: 

16.2 2.9 
5.5 2.G 
-(= 2.9) to -(= Ll), 

when L is incrcased. The reason is that, when I, is 
increased, the ratio of the number of newly added pages 
of linear spiral hashing to that of linear hashing is 
increased under a fixed N .  (Note that this ratio is always 
smaller than 1.) Obviously, since storage utilization and 
the average insertion cost (and the average retrieval cost) 
arc always a trade-off, linear spiral hashing will need 
higher average insertion cost and average retrieval cost 
than the other three methods. 

Fig. 9 shows the relationship between storage 
utilization and the number of inserted data records in 
linear spiral hashing and linear hashing, where A = I ,  so = 

2, 6 = 10, w = 5, and I, = 8. From this figure, we observe 
that linear spiral hashing has more stable and higher 
storage utilization than linear hashing. That is, the oscilla- 
tion in performance during a full expansion in linear spiral 
hashing is smaller than the one in linear hashing. The 

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on August 12,2021 at 03:05:48 UTC from IEEE Xplore.  Restrictions apply. 



CHANG ET AL.: LINEAR SPIRAL HASHING FOR EXPANSIBLE FILES 881 

Pararncters 
b w L 

10 5 8 

10 5 10 
I0 5 12 
20 10 16 
20 10 20 
20 10 24 
40 20 32 
40 20 40 
40 20 48 
80 40 64 
80 40 80 
80 40 96- 

~ ~ ~ . _ _ _ ~ ~  

TABLE 5 
Simulation Results Under the Split Control of the Load Control (1,): (a) Linear Spiral Hashing; (b) Linear 

Hashing; (c) Linear Hashing with Two Partial Expansions; (d) Linear Hashing with Three Partial Expansions 

Linear Spiral Hashing 
u s  uti 

~~ 

INS ss 

16.2 1.884 2.000 0.966 
17.1 1.894 2.000 0.992 
17.9 1.905 2.000 0.980 
10.1 1.829 2.000 0.966 
10.8 1.849 2.000 0.952 
11.5 1.859 2.000 0.956 
6.7 1.759 2.000 0.917 
7.2 1.779 2.000 0.961 
7.8 1.799 2.000 0.952 
4.7 1.652 1.963 0.892 
5.1 1.679 2.000 0.892 
5.5 1.719 2.000 0.909 

~~ 

Plirarnetcrs 
h w L  

10 5 8 
10 5 10 
10 5 12 
20 IO 16 

20 io 20 
20 10 24 
40 20 32 
40 20 40 
40 20 48 
80 40 64 
80 40 80 
80 40 96 

10 5 12 
20 10 16 
20 10 20 
20 10 24 
40 20 32 
40 20 40 
40 20 48 
80 40 64 
80 40 80 
80 40 96 

3. I 
2.5 
2.7 
2.8 
2.3 
2.5 
2.7 
2.2 
2.4 
2.6 

1.243 
1.012 
1.143 
1.233 
1.002 
1.145 
1.234 
1.001 
1.132 
1.222 

Linear Hashing with Two Par. Exp. 
INS ss us uti 

~- 

3.1 1.015 1.047 0.790 
3.3 1.144 1.445 0.858 
3.5 1.243 1.697 0.858 
2.7 1.016 1.046 0.781 
2.9 1.153 1.438 
3.1 1.241 1.689 
2.4 1.011 1.031 
2.6 1.154 1.438 
2.8 1.245 1.686 
2.3 1.000 1.000 
2.5 1.157 1.436 
2.7 1.247- 1.686 

(4 
b : the size of a home page 

w : the size of an ovcrflow page 
L : luad contrnl 

0.784 
0.784 
0.781 
0.781 
0.781 
0.78 1 

0.781 
0.781 -~ 

reason is that when a split occurs, linear hashing always 
redistribute data records of a certain page i into page i and a 
new added empty page. The property of stable storage 
utilization in linear spiral hashing has distributed the 
overhead of insert/split operations uniformly as data 
record are inserted, while the unstable storage utilization 
in linear hashing may suddenly cause a large overhead of 
insert/split operations. 

1.699 
1.034 
1.423 
1.677 
1.003 
1.407 
1.656 
1.003 
1.376 
1.938 

0.858 
0.78 I 
0.784 
0.784 
0.781 
0.781 
0.781 
0.757 
0.781 
.781 

10 5 8 1.015 1.114 0.790 
10 5 10 3.4 1.136 1.445 0.858 
10 5 12 1.243 1.610 0.863 
20 IO 16 1.026 1.526 0.781 
20 10 20 
20 10 24 
40 20 32 
40 20 40 
40 20 48 
80 40 64 
80 40 80 
80 40 96 

2.9 1.038 
3.1 1.159 
2.4 1.025 
2.6 1.038 
2.8 1.160 
2.3 1.024 
2.5 1.038 
2.7 1.160 

1.786 
1.957 
1.656 
1.936 
2.000 
1.666 
1.958 

2.ooo 

0.784 
0.784 
0.781 
0.781 
0.781 
0.781 
0.78 I 

~- 0.724 

Recall that the growth rate of linear spiral hashing is 
pcr full expansion, which is not a constant since n is 
changed during file growth, where n is the current size of 
the file. To compare the average insertion/retrieval cost in 
linear hashing and linear spiral hashing when both 
approaches achieve the same storage utilization, we try to 
run linear hashing under different choices of L. Table 6 
shows that storage utilization in linear hashing can be 

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on August 12,2021 at 03:05:48 UTC from IEEE Xplore.  Restrictions apply. 



982 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 6, NOVEMBERIDECEMBER 1999 

100% , I 

900, 

Utilization 8 0 " ~  

/PA 

6GYo 
50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 

The number of inserted data 

Fig. 9. The relationship between storage utilization and the number of inselted data records. 

increased as L is increased, at the cost of increasing the 
average retrieval cost, where IC = 1, ,so = 2, b = 20, w = 10, 
and N = loG. From this table, we observe that when both 
approaches have the same average unsuccessful search cost 
(L = 31 in linear hashing), linear spiral hashing has higher 
storage utilization but a higher average insertion cost and a 
higher average successful search cost than linear hashing. 

Moreover, when both approaches have the similar 
average insertion cost ( L  = 03 in linear hashing), linear 
spiral hashing has higher storage utilization but a higher 
average successful search cost than linear hashing. When 
both approaches have the same storage utilization (L = I06 
in linear hashing), linear spiral hashing can have a lower 
average insertion cost but a higher average successful 
search cost than linear hashing. The reason is that, as L is 
increased a lot in linear hashing, the number of file splits is 
decreased in linear hashing. Therefore, given a fixed N and 
the same storage utilization, the number of home pages in 
linear hashing is less than the one in linear spiral hashing. 
When both approaches have the same average successful 
search cost ( L  = 1% in linear hashing), linear spiral hashing 
has a lower average insertion cost but lower storage 
utilization than linear hashing. 

Table 7 shows the simulation results of linear spiral 
hashing and linear hashing under the split control of the 
load factor (A), where: 

k = 1,s" = 2 , N  = 10G,b = 10, and ui = 5 

In linear hashing, as A is increased from 0.5 to 0.95, the 
average insertion cost is increased. The reason is that as A is 
increased, the number of overflow pages is increased. While 
in linear spiral hashing, only one new home pagc is added 
to the file after a full expansion, instead of n new home 
pages in linear hashing, which results in higher storage 
utilization. Therefore, almost a split occurs after a data 
record is inserted because the storage utilization in linear 
spiral hashing always exceeds the load factor, which results 
in a higher average insertion cost than the one in linear 
hashing. Although the number of splits in linear spiral 
hashing is larger than that in linear hashing, the number of 
home pages in linear spiral hashing is less than that in 
linear hashing which results in a higher average retrieval 
cost in linear spiral hashing as shown in Table 7. Moreover, 
when A > 0.85, linear hashing cannot retain the storage 
utilization up to A. The reason is that the higher A is, the 
higher the ratio of performance oscillation during a full 

TABLE 6 
The Relationship Between Performance and L in Linear Hashing 

L = 20 

L = 30 

L = 6 0  

L=93 
L =  100 
I, = 106 
L =  120 
L =  126 

linear spiral 
1. = 20 

~~~~~~ .... .. ..... 

INS ss us uti

2.92 1.153 1.438 0.7x4
4.00 1.347 1.968 0.784
4.11 1.359 2.000 0.784
7.82 1.669 2.000 0.888

10.60 1.779 2.000 0.934
10.90 1.789 2.000 0.938
11.58 1.799 2,000 0.943
12.15 1.819 2.000 0.952
13.70 1 . ~ 3 9 2.000 0.961
14.3s 1.849 2.000 0.961

1 0 . ~ 2 1.849 2.000 0.952

L : load coiitroi
INS : insertion cost

ss : successful search cos^
us : unsuccessfid search cos1
uti : storage utilization

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on August 12,2021 at 03:05:48 UTC from IEEE Xplore. Restrictions apply.

CHANG ET AL.: LINEAR SPIRAL HASHING FOR EXPANSIBLE FILES 983

TABLE 7
Simulation Results Under the SDlit Control of the Load Factor (A)

oad Faclor
A

~-
~~~~ 

0.50 
0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 
0.95 

Linear Spiral Hashing 
INS ss us uti 

~~ ~ ~ ~ ~~~~~~~~ ~~~~ 

I 1.28 1.550 2.000 0.890 
I 1.31 ISSO 2.000 0.892 

I 1.35 1 . 5 ~ 0  2.000 0.896 
I 1.42 i.m 1 . 9 ~ 9  0.901 
11.58 1.555 1.994 0.Y01 

I 1.76 1.560 2.000 0.913 

12.09 1.563 1.992 0.921 

12.78 i s 8 0  2.000 0.956 

13.97 1.760 2.000 0.947 

13.53 1.629 1.998 0.892 

A : load factor 

INS : inscILion cos1 

expansion in lincar hashing to thc one in linear spiral 
hashing is. 

In linear spiral hashing, under the split control of the 
load control L and k = I, nL more data records are 
distributed into (n + 1 ) home pages per full expansion, 
instead of 271, home pagcs in linear hashing, which results in 
bettcr storage utilization in linear spiral hashing than the 
one in linear hashing as has been proved by both analysis 
and simulation results. However, high storage utilization 
implies that there may be many overflow pages for each 
home page, resulting in a large number of disk accesses for 
data retrieval and insertion operations. Therefore, we look 

Y 

1ZW f 

Fig. 10. The growth functions In linear spiral hashing and linear hashing. 

Liiicar IIashing 
INS ss us uti 

~~ ~ ~ 

2.62 1.000 1.000 O.SIIO 
2.60 1.000 1.000 0.549 

2.61 1.000 1.000 0.599 

2.66 1 . m  i.ono 0.649 

2.85 i .oon 1.ono 0.746 

3.00 1.032 1.093 0 . m  

3.3s 1.324 1.904 0.858 
3.28 1.671 2.000 0.892 

2.73 1.000 1.000 0.6YY 

3.17 1.115 1.337 0.849 

ss : successfill search cost 

us : unsuccesshil search COSL 

uti : shiragc utilization 

for a compromise between high storage utilization and fast 
data retrieval. Fig. 10 shows the growth functions with 
different values of k in linear spiral hashing and the growth 
function in linear hashing. As k is increased in linear spiral 
hashing, the number of new added logical pages is 
increased, which results in a lower average retrieval cost 
and a lower average insertion cost but lower storage 
utilization than linear hashing. On the other hand, as k i s  
decreased in linear spiral hashing, the number of new 
added logical pages is decreased, which results in higher 
storage utilization but a higher average retrieval cost and a 
higher average insertion cost than linear hashing. That is, i f  
we care about fast retrieval (and a low average insertion 
cost) more than high storage utilization, we choose a IC with 
a large value in linear spiral hashing. Thercforc, linear 
spiral hashing provides a flexible choice between these two 
requirements. 

6 CONCLUSION 
In this paper, we have proposed a new scheme (called linear 
spiral hashing) for dynamic hashing in which the growth of 
a file occurs at a rate of e per full expansion, where 71, is the 
number of pages of the file and IC is a given integer constant 
which is smaller than n, as compared to a rate of two in 
linear hashing. Because the growth rate of a file is less than 
two, linear spiral hashing can provide better storage 
utilization than linear hashing [18]. Moreover, linear spiral 
hashing can maintain a more stable performance through 
the file expansions than linear hashing. From our mathe- 
matical analysis and simulation study, linear spiral hashing 
with k = 1 can achievc nearly 97 pcrcent storage utilization 
as compared to 78 percent storage utilization by using linear 
hashing. As comparcd to the schemes based on the spiral 
storage approach [25], linear spiral hashing not only has 
reduced the cost for address calculation, but also has a 

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on August 12,2021 at 03:05:48 UTC from IEEE Xplore.  Restrictions apply. 



984 IEEE TRANSACTIONS ON KNOWLEDGE AN0 DATA ENGINEERING, VOL. 11. NO. 6, NOVEMBERIOECEMBER 1999 

lnuch uniform load distribution due to the linear growth 

his tory  of sp l i t  sequence should be  traced and on ly  one 

[I71 D. Lestcr, "Profile of a Web Database," Database, vol. 18, no. 6, 
pp. 46-50, Dec. 1995. 

Addressing," h c .  Sixth Int'I Conf very ~ a r g e  Data BOSCS, pp. 212- 
function' to compute the logica1 addresses, no [ l a ]  W. Lihin,  "Linear Hashing: A New Tool for Files and Tables 

variable i s  needed to b e  recorded in l inear spiral hashing 
(i,c,, firrt or c), instead of a table of indexes in [24] or a 
sequence of spl i t  points in VI. Furthermore, linear Spiral 
hashing has a systematic w a y  in hand l ing  f i le contraction. 

Since high storage ut i l izat ion a n d  fast data retr ieval are 
dynamic hashing schemes, we look 

for a compromise between high storage ut i l izat ion a n d  fast 
data retrieval. Our simulat ion results show that. if w e  care 

223, 1980. 
1191 D.R. Lomet, "Bounded Index Exponential Hashing," ACM Tmns. 

Database Systems, vol. 8, nu. 1, pp. 136.165, Mar. 1983. 
[20] D.B. Lomet, "rartial Expansions for File Organizations wit11 an 

Index," ACM Trans. Dnlabme Sptcms, vol. 12, no. 1, pp. 65-84, 
Mar. 1987. 

1211 G.N. Martin, "Spiral Storage: Jncrcmcntally Augmentable Hash 
Addressed Storage," Theory of Computation Report, no. 27, Univ. of 
Warwick, Conventry, England, ~ a ~ .  1979. 

I221 H. Mendelson, "Analvsis of Extendible Hashing," IEEE Trans. 

a trade-off in 

~~ 

about fast retr ieval (and a low average inser t ion cost) more 
than high storage utilization, w e  choose a k with a large value 
in linear spiral hashing. Therefore, linear spiral hashing 
provides a flexible choice between these two requirements. 
Since there are m a n y  factors w h i c h  a fi le structure designer 

Sof'wnre 

overflow storage," BIT, 

no. Pp. 611-619, Nov. 198i 
[23] J.K. Mullin, "Tightly Controlled Linear Hashing without Separate 

[24] J.K. Mullin, "Unified Dynamic Hashing," Proc. 10tl1 hlt'l Conf. Vruy 

2n, no, 3, pp, 330. 

21, no. 4, pp, 390.400, 1981. 

Data Bases, PP. 473-480, 
[25] J.K. Mullin, "Spiral Storagc: Efficient Dynamic Hashing with 

Constant performance," 
cares about, inc lud ing  fast data retrieval, a low average 334, 1985. 
insert ion cost, high storage utilization, a n d  stable perf&- 
mance through file expansions, approach provides the 
designers a useful a n d  flexible formula to reach their goals. 

ACKNOWLEDGMENTS 
This research was supported, in part, by the 
Science Counci l  of the Republic of China under  Grant  
No. NSC-82-0408-E-120.135. 

1261 E.J. Otto, "Linearizing the Directory Growth in Order Prcscrving 
Extendible Hashing," Puoc. Fourilr Inf'l Conf Dntn Eng., pp. 580- 
588,1988. 

~271 K. ~ ~ ~ ~ ~ ~ l , ~ ~ ~ ~ ~ ~  and 1.w. ~ l ~ ~ d ,  , , ~ ~ ~ ~ ~ i ~  
Schemes," Conrprilrr J., vol. 25, no. 4, pp. 478.485. 1982. 

[ZH] K. Ramamahanarao, "Recursive Linear Hashing," ACM Trans. 
Database Systems, vol. 9, no. 3, pp. 369-391, Sept. 1984. 

[29] M. Scholl, "New File Organizatiuns Based on Dynamic Hashing," 
ACM Trans. Daiabnsc Systems, vol. 6, no. 1, pp. 194-211, Mar. 1981. 

[30] E. Veklcrov, "Analysis of Dynamic Hashing with Deferred 
Splitting," ACM Trans. Dntubuse Systems, vol. 10, no. 1, pp, 90-96, 
Mar. 1985. 

REFERENCES 
U. Bechtold and K. Kuspert, "On the Use of Extendible Hashing 
without Hashing," Infonnofion Processiitg l r f ters ,  vol. 19, pp. 21- 
71; 1 9 R A  
-11, _,"I. 

J. Chu and G.D. Knott, "An Analysis of Spiral Hashing," 
Conipiilcr J., vol. 37, no. 8, pp. 715-719, 1994. 
11.J. Enbody and 1I.C. Du, "Dynamic Hashing Schemcs," ACM 
Cnnipvtit!g Surveys, vol. 20, no. 2, pp. 85-113, June 1988. 
N.I. Hachrm and P.B. Berm, "Key-Sequential Access Method for 
Very Large Files Derived from Linear Hashing," Proc. Fifth Int'l 
Conf. Dnfo Eng., pp. 305-312,1989. 
N.I. Hachem and P.B. Berm, "New Order Preserving Access 
Method for Very Large Files Derivcd from Linear Hashing," IEEE 
Trans. Knowledge and Data Eng., vol. 4, no. 1, pp. 68-82, Feb. 1992. 
R. Fagin, J. Nievergclt, N. Pippenger, and H.R. Strong, "Extendible 
Hashing-A Fast Access Method for Dynamic Files," ACM Trans. 
Database Systems, vol. 4, no. 3, pp. 315.344, Sept. 1979. 
K. Kawagoe, "Modified Dynamic Hashing," Puoc. Sixth ACM 
SIGMOD Int'l Conf. Management of Dntn, pp. 201-213, 1985. 
P. Kjellberg and T.U. Zahle, "Cascade Hashing," Pmc. 10th Int'i 
Col$ Very Laqe Data Bnses, pp. 481-492, 1984. 
1'. Larsan, "Dynamic Hashing," RIT, vol. 18, pp. 184-201, 1978. 
P. Larson, "Linear Hashing with Partial Expansions," Proc. Sixth 
Int'l Con/ Very Large Data Bases, pp. 224-232, 1980. 
P. Larson, "A Single-File Version of Linear Hashing with Partial 
Expansions," Pmc. Ei,ylith lnf'i Conf. Very Large Data Bases, pp. 300- 
30~,19n2. 
1'. Larson, "Performance Analysis of Linear Hashing with Partial 
Expansions," ACM Tmns. Dntnbnse Sysiems, vol. 7, no. 4, pp. 566- 
587, Dec. 1982. 
P. Larson and A. Kajla, "File Organization: Implcmcntation of a 
Mctlmd Guaranteeing Retrieval in One Access," ACM Coniputing 
Pmcfices, vol. 27, n o  7, pp. 670-677, July 1984. 
P. Larson, "Linear Hashing with Overflow-Handling by Linear 
Probing," ACM Trans. Dutabnsc Systems, vol. 10, no. 1, pp. 75-89, 
Mar. 1985. 
P. Larsan, "Linear Hashing with Separators-A Dynamic Hashing 
Scheme Achieving One-Access Retrieval," ACM Trans. Database 
S!/sfems, vol. 13, no. 3, pp. 366-388, Sept. 1988. 
C.I. Lee, "Design and Analysis of Dynamic Hashing Scheme3 
Without Indexcs," masters thesis, Dept. of Applicd Math.. 
National Sun Yat-Sen Univ., Republic of China, Junc 1993 

distributed systems, 
networks. She is a m 

Ye In Chang received the 6s degree in 
computer science and information engineering 
from National Taiwan Univerisity, Taipei, Taiwan, 
in 1986; and the MS and PhD degrees in 
computer and information science from Ohio 
State University, Columbus, in 1987 and 1991, 
respectively. Since 1991, she has been on the 
faculty of the Depaltment of Applied Mathematics 
at National Sun Yat-Sen University, Kaohsiung, 
Taiwan, where she is currently a professor. Her 
research interests include database systems, 

multimedia information systems, and computer 
emberof the IEEEand the IEEE Computer Society. 

Chien-l Lee received the BS degree in compu- 
ter science from Feng Chia University in 1987; 
the MS degree in applied mathematics from 
National Sun Yat-Sen University in 1993: and 
tho PhD degree in computer science from 
National Chiao Tung University in June 1997. 
He then joined the Institute of Information 
Education at National Tainan Teacher College, 
Tainan, Taiwan, and is currently an assistant 
professor. His research interests include object- 
oriented databases, access methods, muitime- 
dia storage servers, video on demand, informa- 
tion retrieval, and web databases. 

Wann-Bay ChangLiaw received the BS degree 
in computer science from Tunghai Unviersily in 
1992 and the MS degree in applied mathematics 
from National Sun Yat-Sen University in 1994. 
His current research interests include database 
systems and distributed systems. 

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on August 12,2021 at 03:05:48 UTC from IEEE Xplore.  Restrictions apply. 


